File: 2306071

August 3, 2023

Judy Hayes Galiano Island BC

Attention: Judy Hayes

# Re: <u>Groundwater Supply for Proposed Subdivision of 490 Gardner Way, Galiano</u> Island

As requested, Hy-Geo Consulting has completed a review of two pumping tests conducted on bedrock wells (WID 69176) and WID 69177) for the above property. An unregistered dug well also located on the property, was not tested. The two pumping tests were conducted on the bedrock wells in order to meet the requirements of *Standards for Potable Water Supply, Sections 13.24 to 13.29* under *Galiano Island Land Use Bylaw, No. 127, 1999* (Galiano Island Local Trust Committee, 2023). The minimum water requirements are 2275 L/day for a single residence. This quantity is equivalent to a pumping rate of 0.42 USgpm (1.58 L/min).

### Site Location

The property proposed for subdivision into 2 lots is situated at the southeastern end of Galiano Island approximately 0.6 kilometres southwest of Murcheson Cove (Figures 1 and 2). The property is currently designated as PID 4695844 and comprises 13.43 hectares. The property is situated along a gentle relatively uniform west-facing slope between elevations of 70 to 45 metres above sea level (Figure 3). Surface drainage is towards the west and northwest into a regional lowland area via drainage ditches. A small excavated pond is situated in the western portion of the property (Figure 3). Reported nearby well locations mapped under the *British Columbia Water Resources Atlas* (Province of British Columbia, 2023a), are shown in Figure 1. The wells are all situated within the *Murcheson-Whaler Bay Groundwater Region* delineated by Kohut and Johanson (1998).

### Climate

The climate of Galiano Island is characterized by cool dry summers and humid mild winters. With the absence of a current climate station on Galiano Island, the Saturna Campon climate station (ID 1017098) may be considered representative of the general longer-term (monthly) precipitation patterns on Galiano having an annual normal precipitation amount of 812.2 mm based on the 1981-2010 period (Figure 4). The active climate station on Saturna is now the Saturna Campon CS station (ID 1017099). Table 1 indicates that the cumulative precipitation for the Saturna Campon CS station during the nine-month period from October 2022 to end of June 2023 climate station was 96.1 percent of normal. While the overall precipitation was close to normal, there was significant variability among the months, e.g. 51.6% of normal in January 2023 and 251.2 % of normal in December 2022. The months of May and June 2023 were especially dry.




Figure 1. Location of subject property, pump tested wells (WID 69176 and WID 69177) and closest neighbouring wells. Basemap from Province of British Columbia (2023a).

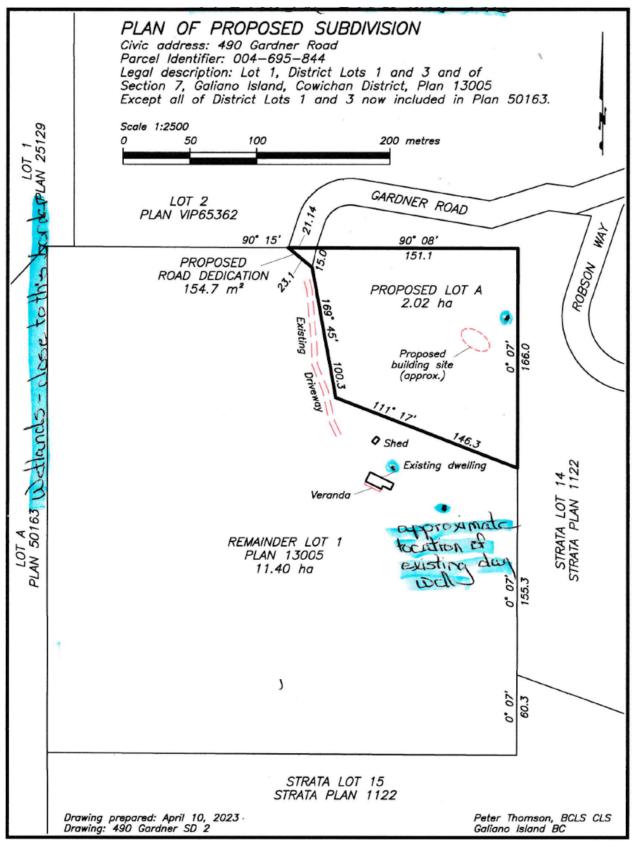



Figure 2. Draft plan of proposed subdivision. Adapted from Thomson (2023).

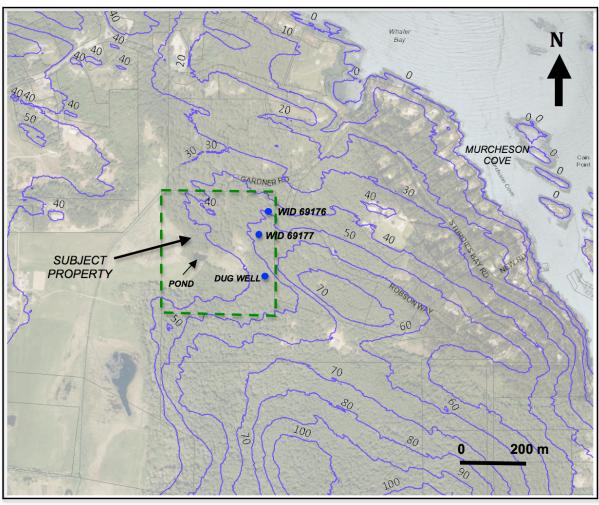



Figure 3. Topographic site conditions. Contour interval = 10 m. Basemap from Islands Trust (2023).

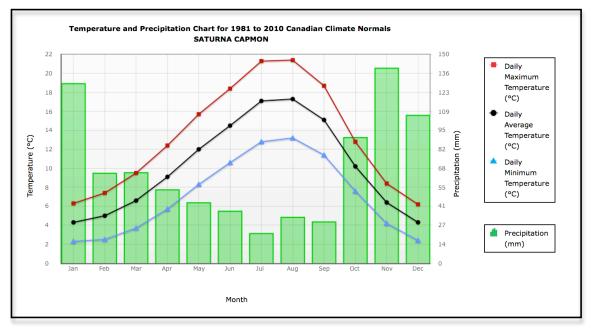



Figure 4. Graph of monthly normal precipitation for Saturna Campon station (Climate ID. 1017098). Graph from Government of Canada (2023a).

Table 1. Monthy precipitation data for Saturna Campon CS climate station (Climate ID. 1017099) in 2022-23 compared to 1981-2010 normals.

| Month    | Precipitation in 2022-23 (mm) | Monthly<br>Precipitation<br>Normal (mm) | Percent of Normal | Cumulative<br>Percent of<br>Normal |
|----------|-------------------------------|-----------------------------------------|-------------------|------------------------------------|
| October  | 100.2                         | 90.2                                    | 111.1             | 111.1                              |
| November | 84.2                          | 140.1                                   | 60.1              | 80.1                               |
| December | 266.8                         | 106.2                                   | 251.2             | 134.1                              |
| January  | 66.6                          | 129.0                                   | 51.6              | 111.3                              |
| February | 62                            | 64.6                                    | 95.8              | 109.4                              |
| March    | 31                            | 65.0                                    | 47.7              | 102.6                              |
| April    | 52.4                          | 52.7                                    | 99.4              | 102.4                              |
| May      | 19.7                          | 43.4                                    | 45.4              | 98.8                               |
| June     | 17.4                          | 37.3                                    | 46.6              | 96.1                               |
| Total:   | 700.3                         | 728.5                                   | 96.1              |                                    |

Data from Government of Canada (2023b).

# **Hydrogeologic Setting**

Galiano is comprised of sedimentary clastic rocks belonging to the Nanaimo Group of Late Cretaceous age (Muller and Jeletzky, 1970). These consist of alternating interbeds of sandstone, mudstone, siltstone, shale and conglomerate. The general groundwater conditions of Galiano Island have been reported by several authors including Harrison (1994), Kohut and Johanson (1998) and Waterline Resources Inc. (2011). Groundwater on the island is found primarily in open fractures in the bedrock formations as they are encountered during drilling of water wells. These fractures constitute the major zones for groundwater storage and movement.

From historic observation well data in the Gulf Islands, groundwater levels in bedrock wells generally rise and fall with the seasons, in response to available precipitation, becoming highest during the late fall and winter months. Water levels then normally decline during the dry summer months reaching seasonal lows in the late fall months (Kohut *et al.*,1984). Figure 4 shows the available reported groundwater level trend data for Provincial Observation Well 258, situated near Sturdies Bay during 2022 - 2023. Data after early March 2023 is currently not available. Historically, water levels during July would be expected to be seasonally low approaching seasonal minimum levels of September-October.

### **Well WID 69176**

Well WID 69176 was drilled on April 27, 2023 by Red Williams Well Drilling Ltd., to a depth of 305 feet (92.96 m) and completed in grey sandstone with fractures reported at 30 to 35 ft (9.14 to 10.67 m), 37 to 38 feet (11.28 to 11.58 m), 73 to 75 feet (22.25 to 22.86 m) and 250 feet (76.20 m). Well WID 69176 is likely completed within interbedded sandstone layers of the Gabriola Formation (Muller and Jeletzky, 1970). The well was airlifted for 2 hours at a rate of 1 USgpm (3.78 L/min). The fracture at 250 feet (76.20 m) likely provides the main source of water in the well.

Elevation of the wellhead is approximately 45 m (147.6 feet) above mean sea level based on topography at the site. A copy of the original well record is provided in Appendix A. The final well depth is approximately 157.4 feet (48 m) below sea level. The non-pumping (static) water level upon well completion was reported at 55 feet (16.8 m) or approximately 92.52 feet (28.2 m) above sea level.

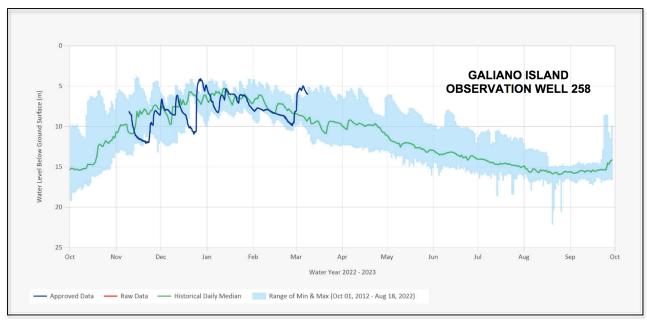



Figure 4. Groundwater level trend in 2022-2023 compared to historic maximum, minimum and median data for Observation Well 258. Adapted from Province of British Columbia Environment (2023b).

# **Pump Testing Conducted on Well WID 69176**

A pumping test of 12 hours duration is generally considered sufficient for determining the sustainable yield of a domestic residential well where the minimum water requirements are 2275 L/day for a single residence, as set out under *Galiano Island Land Use Bylaw No.* 127, 1999, (Galiano Island Local Trust Committee, 2023).

A 12 hour constant rate pumping test was subsequently carried out on Well WID 69176 on July 10-11, 2023 at an average rate of 1.1 USgpm (4.16 L/min) based on flow metre readings. The test was undertaken by Red Williams Well Drilling and Pump Installations Ltd., with a submersible pump set in the well at a depth of 285 to 290 feet (86.87 to 88.39 m). Pumped water was discharged 150 feet (45.72 m) away from the wellhead towards the north. Manual water level readings were taken during the test at prescribed intervals (Province of British Columbia, 2010). A Heron™ Instruments Inc., dipperLog datalogger was set in the pumped well to record water levels at one minute intervals. Pumping was followed by manually measuring the recovery water levels at prescribed intervals for 4 hours. A second Heron™ Instruments Inc., was also set in Well WID 69177 which was used as an observation well during the pumping of Well WID 69176.

During the day of the test, no precipitation was recorded at the Saturna Campon climate station (Climate ID. 1017099) and 16.6 mm of precipitation was recorded during the 10 days prior to the start of the test. It is unlikely this amount of precipitation would have significantly affected groundwater levels during this time.

Water samples were taken from the Well WID 69176 on July 11 after 11.8 hours of pumping and delivered within 24 hours of sampling with ice packs to the Bureau Veritas Ltd., laboratory in Esquimalt for analysis of chemical and bacteriological parameters. All samples were unadulterated and taken from Well WID 69176 and delivered to the laboratory by A. Kohut.

# **Results of Pump Testing Well WID 69176**

Pump testing data for Well WID 69176 are provided in Appendix B. Appendix C contains copies of the analytical laboratory reports from Bureau Veritas Ltd. Figure 5 shows the drawdown in Well WID 69176 during pumping. At the end of the test, drawdown reached 6.06 m (19.88 feet) below the pre-pumping level of 16.30 m (53.48 feet) below the top of casing or 5.45 m (17.88 feet) below ground. Water level recovery was 68.5% after 4 hours of the pump shutting down (Figure 6) and 77.6 % after 12 hours. Figure 7 indicates a slowing down of the recovery in Well WID 69176 due to the startup of the pumping test on Well WID 69177. The effects, however, are not considered significant.

Extrapolation of the drawdown curve to 100 days without recharge indicates the drawdown would reach 15 m (49.21 feet), utilizing 25% of the available drawdown of 59.9 m in the well to the top of the major water-bearing fracture at a depth of 76.20 m (250 feet).

Based on the above results, the long-term well capacity is likely much greater then the rate at which the well was pump tested i.e., 1.1 USgpm (4.164 L/min). It would be prudent, however, to not rate the capacity of the well greater than the rate at which it was pumped. With the limited drawdown observed during the test it is unlikely that pumping the well for a residence would have any significant measureable effects on any neighbouring wells. Use of the well for domestic purposes would not result in drawdown in the well falling below sea level and causing sea water intrusion into the aguifer.

Well WID 69176 is more than capable of meeting the minimum standards of 0.42 USgpm (1.58 L/min) or 2275 L/day for potable water supply under *Galiano Island Land Use Bylaw No. 127, 1999*, (Galiano Island Local Trust Committee, 2023).

# Water Quality of Well WID 69176

Results of the July 11, 2023 water quality analyses are provided in Table 2. The water quality is moderately low in dissolved mineralization with TDS of 270 mg/L. Sample results met or exceeded the *Guidelines for Canadian Drinking Water-Summary Table* (Health Canada, 2022) for all parameters analyzed except for elevated levels of total manganese at 53.7  $\mu$ g/L. No coliform or E. coli bacteria were detected. Manganese above 20  $\mu$ g/L is of aesthetic concern and may result in staining of laundry and/or toilet fixtures.

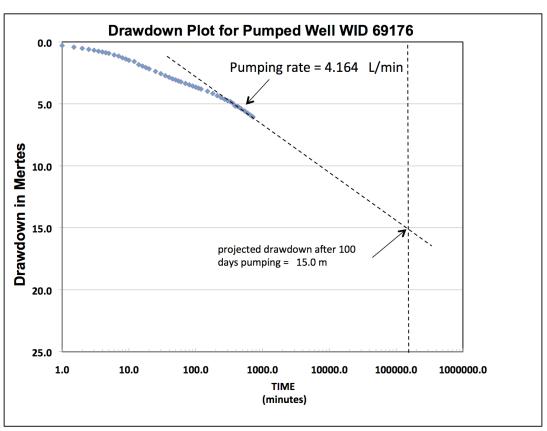



Figure 5. Semi-log drawdown plot for Well WID 69176 pumping at 4.164 L/min.

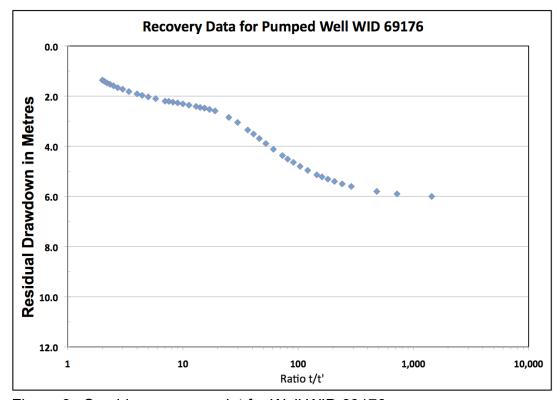



Figure 6. Semi-log recovery plot for Well WID 69176.

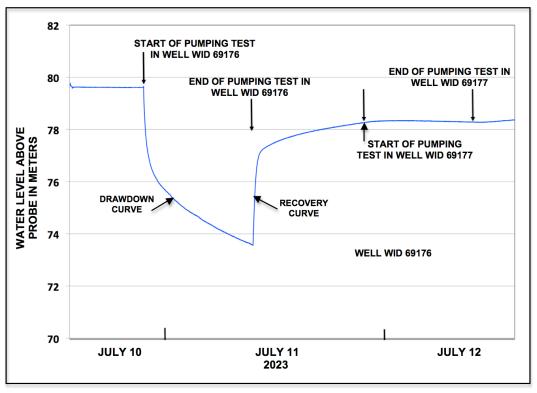



Figure 7. Water level in Well WID 69176 during pumping of Well WID 69176 and Well WID 69177.

### **Well WID 69177**

Well WID 69177 was drilled on April 27, 2023 by Red Williams Well Drilling Ltd., to a depth of 205 feet (62.48 m) and completed in grey sandstone. Well WID 69177 is likely completed within sandstone layers of the Gabriola Formation (Muller and Jeletzky, 1970). Water-bearing fractures were not reported but are likely below a depth of 179 feet (54.60 m). The wellhead is approximately 52 m above sea level with the bottom of the well at 10.48 m below sea level. A copy of the original well record is provided in Appendix A. The non-pumping (static) water level on April 27, 2022 was not reported. The well was airlifted for 2 hours at a rate of 1 USgpm (3.78 L/min) and yield estimated at 1 USgpm (3.78 L/min).

# **Pump Testing Conducted on WID 69177**

A 12 hour constant rate pumping test was carried out on Well WID 69177 on July 11-12, 2023 at an average rate of 1.01 USgpm (3.823 L/min) based on flow metre readings. The test was undertaken by Red Williams Well Drilling and Pump Installations Ltd., with a submersible pump set in the well at a depth of 194 feet (59.13 m). Pumped water was discharged 150 feet (45.72 m) downslope away from the wellhead towards the west. Manual water level readings were taken during the test at prescribed intervals (Province of British Columbia, 2010). A Heron™ Instruments Inc., *dipperLog* datalogger was set in the pumped well to record water levels at one minute intervals. Pumping was followed by manually measuring the recovery water levels at prescribed intervals for 4 hours. A Heron™ Instruments Inc., datalogger was also employed in Well WID 69176 which was used as an observation well during the testing of WID 69177.

During the days of the test, no precipitation was recorded at the Saturna Campon climate station (Climate ID. 1017099) and 16.1 mm of precipitation was recorded during the 10 days prior to the start of the test. It is unlikely this amount of precipitation would have significantly affected water levels in the well.

Water samples were taken from the Well WID 69177 on July 12 after 11.8 hours of pumping and delivered within 24 hours of sampling with ice packs to the Bureau Veritas Ltd., laboratory in Esquimalt for analysis of chemical and bacteriological parameters. All samples were unadulterated and taken from Well WID 69177 and delivered to the laboratory by A. Kohut.

# Results of Pump Testing Well WID 69177

Pumping test data for Well WID 69177 are provided in Appendix B. Appendix C contains copies of the analytical laboratory reports from Bureau Veritas Ltd. Figure 8 shows the drawdown in Well WID 69177 during pumping. At the end of the test, drawdown reached 5.78 m (18.96 feet) below the pre-pumping level of 9.40 m (30.84 feet) below the top of casing, or 8.40 m (27.56 feet) below ground. Water level recovery was 98.3 % complete after 4 hours of the pump shutting down (Figure 9). Figure 10 indicates a slight (<0.1 m) lowering of the water level in Well WID 69177 during the pumping test of Well WID 69176. This effect, however, is not considered significant.

Extrapolation of the latter portion of the drawdown data to 100 days without recharge indicates the drawdown would reach 9.0 m (29.53 feet), utilizing 19.5% of the available drawdown of 46.2 m in the well to the top of the major water-bearing fracture at a depth of 54.6 m (179 feet).

Based on the above results the long-term well capacity is likely much greater then the rate at which the well was pump tested i.e., 1.01 USgpm (3.823 L/min). It would be prudent, however, to not rate the capacity of the well greater than the rate at which it was pumped. With the limited drawdown observed during the test it is unlikely also that pumping the well for a residence would have any significant measureable effects on any neighbouring wells or nearby surface water sources. Use of the well for domestic purposes would not result in drawdown in the well falling below sea level and causing sea water intrusion into the aquifer.

Well WID 69177 is more than capable of meeting the minimum standard of 2275 L/day for potable water supply under *Galiano Island Land Use Bylaw No. 127, 1999*, (Galiano Island Local Trust Committee, 2023).

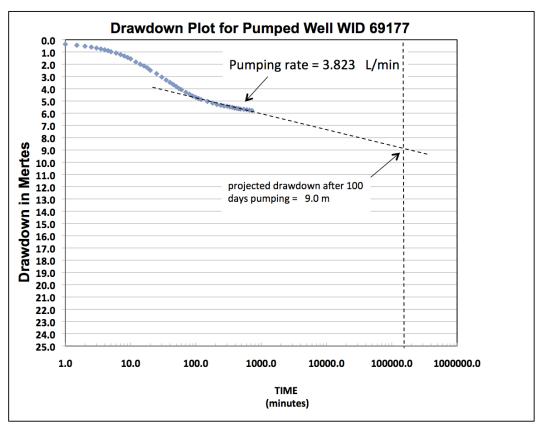



Figure 8. Semi-log drawdown plot for Well WID 69177 pumping at 3.823 L/min.

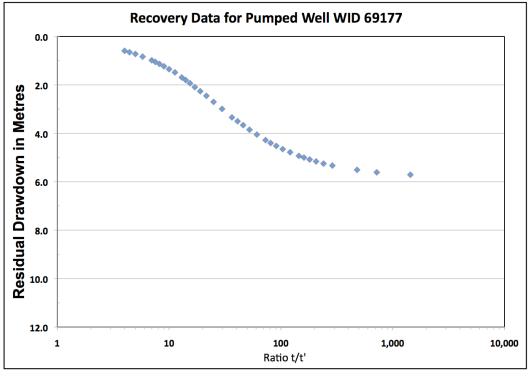



Figure 9. Semi-log recovery plot for Well WID 69177.

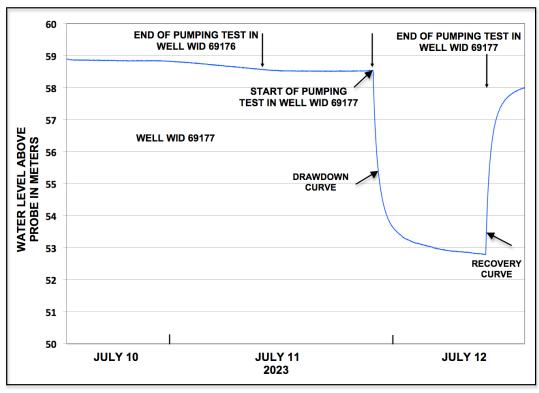



Figure 10. Water level in Well WID 69177 during pumping of Well WID 69176 and Well WID 69177.

# Water Quality of Well WID 69177

Results of the July 12, 2023 water quality analyses are provided in Table 2. The water quality is moderately mineralization with total dissolved solids (TDS) of 240 mg/L. Sample results met or exceeded the *Guidelines for Canadian Drinking Water-Summary Table* (Health Canada, 2022) for all parameters analyzed except for elevated levels of total manganese at 185  $\mu$ g/L and total coliforms at 2.0 CFU/100mL. No E. coli bacteria were detected.

Total manganese levels above 20  $\mu$ g/L is of aesthetic concern and may result in staining of laundry and/or toilet fixtures. Manganese above 120  $\mu$ g/L is of a health concern and may cause neurological effects in young children consuming large amounts of water with elevated manganese levels. Further testing for dissolved manganese levels would be warranted before deciding whether water treatment measures may be required. Elevated total coliforms, however, are of a health concern and would require treatment. The levels detected could be natural as a result of decaying organic matter present in the bedrock formations. There are no potential sources of contamination from animal wastes in proximity to the well.

Table 2. Summary of water quality analyses.

| Parameters/Site and Sampling<br>Date              | WELL<br>WID 69176<br>Donna Knox<br>Well<br>July 11/23 | WELL<br>WID 69177<br>Judy Hayes<br>Well<br>July 12/23 | Canadian<br>DWGuideline<br>2022 | Units        |
|---------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------|--------------|
| PHYSICAL TESTS                                    | July 11/23                                            | July 12/23                                            |                                 |              |
| True Colour                                       | <5.0                                                  | <5.0                                                  | 15                              | TCU          |
| Conductivity                                      | 460                                                   | 410                                                   |                                 | μS/cm        |
| Total Hardness (CaCO <sub>3</sub> )               | 35.8                                                  | 125                                                   |                                 | mg/L         |
| pH                                                | 8.27                                                  | 7.86                                                  | 7.0-10.5                        | pH units     |
| Total Dissolved solids (TDS)                      | 270                                                   | 240                                                   | 500                             | mg/L         |
| Turbidity                                         | 0.38                                                  | 0.38                                                  | <1.0                            | NTU          |
| ANIONS                                            | 240                                                   | 400                                                   |                                 |              |
| Alkalinity (Total as CaCO <sub>3</sub> )          | 210<br><1.0                                           | 180<br><1.0                                           |                                 | mg/L         |
| Alkalinity (PP as CaCO <sub>3</sub> ) Bicarbonate | 250                                                   | 220                                                   |                                 | mg/L         |
| Carbonate                                         | <1.0                                                  | <1.0                                                  |                                 | mg/L<br>mg/L |
| Hydroxide                                         | <1.0                                                  | <1.0                                                  |                                 | mg/L         |
| Chloride                                          | 16                                                    | 8.5                                                   | 250                             | mg/L         |
| Fluoride                                          | 0.30                                                  | 0.11                                                  | 1.5                             | mg/L         |
| Nitrate (N)                                       | <0.020                                                | 0.560                                                 | 10                              | mg/L         |
| Nitrite (N)                                       | <0.0050                                               | 0.0                                                   | 1                               | mg/L         |
| Total Organic Nitrogen (N) Total Ammonia (N)      |                                                       |                                                       |                                 | mg/L<br>mg/L |
| Nitrate plus Nitrite (N)                          | <0.020                                                | 0.567                                                 |                                 | mg/L         |
| Total Nitrogen (N)                                | 3.323                                                 | 0.501                                                 |                                 | mg/L         |
| Total Organic Carbon ( C)                         |                                                       |                                                       |                                 | mg/L         |
| Total Phosphorus (P)                              |                                                       |                                                       |                                 | mg/L         |
| Total Sulphide                                    |                                                       |                                                       | 0.05                            | mg/L         |
| Sulphide (as H2S)                                 | 6.1                                                   |                                                       | 0.05                            | mg/L         |
| Sulphate                                          | 0.1                                                   | 6.0                                                   | 500                             | mg/L         |
| TOTAL METALS                                      | 22.2                                                  | 45.7                                                  | 2000                            |              |
| Aluminum<br>Antimony                              | 23.3<br><0.50                                         | 15.7<br><0.50                                         | 2900<br>6                       | μg/L<br>μg/L |
| Arsenic                                           | 1.44                                                  | 0.66                                                  | 10                              | μg/L         |
| Barium                                            | 2.0                                                   | 6.2                                                   | 2000                            | μg/L         |
| Beryllium                                         |                                                       |                                                       |                                 | μg/L         |
| Bismuth                                           |                                                       |                                                       |                                 |              |
| Boron                                             | 228<br><0.010                                         | 63<br><0.010                                          | 5000                            | µg/L         |
| Cadmium<br>Chromium                               | <1.0                                                  | <1.0                                                  | 7<br>50                         | μg/L<br>μg/L |
| Cobalt                                            | 0.27                                                  | <0.20                                                 | 50                              | μg/L         |
| Copper                                            | 5.40                                                  | 6.02                                                  | 1000 and 2000                   | μg/L         |
| Iron                                              | 30.2                                                  | 34.1                                                  | 300                             | μg/L         |
| Lead                                              | <0.20                                                 | 0.23                                                  | 5                               | μg/L         |
| Manganese                                         | 53.7                                                  | 185                                                   | 20 and 120                      | μg/L         |
| Mercury                                           | <0.0019                                               | <0.0019                                               | 1                               | µg/L         |
| Molybdenum<br>Nickel                              | 2.2<br><1.0                                           | 1.0<br><1.0                                           |                                 | µg/L         |
| Selenium                                          | <0.10                                                 | <0.10                                                 | 50                              | μg/L<br>μg/L |
| Silicon                                           | 7250                                                  | 10400                                                 |                                 | μg/L         |
| Silver                                            | <0.020                                                | <0.020                                                |                                 | μg/L         |
| Strontium                                         | 80.2                                                  | 304                                                   | 7000                            | μg/L         |
| Thallium                                          |                                                       |                                                       |                                 |              |
| Tin<br>Titanium                                   |                                                       |                                                       |                                 | μg/L<br>μg/L |
| Uranium                                           | 0.12                                                  | 0.32                                                  | 20                              | μg/L<br>μg/L |
| Vanadium                                          | <5.0                                                  | <5.0                                                  | 20                              | μg/L         |
| Zinc                                              | <5.0                                                  | 8.7                                                   | 5000                            | μg/L         |
| Zirconium                                         |                                                       |                                                       |                                 | μg/L         |
| Calcium                                           | 11.9                                                  | 41.6                                                  |                                 | mg/L         |
| Magnesium<br>Detaccium                            | 1.49<br>0.193                                         | 5.11<br>0.303                                         |                                 | mg/L         |
| Potassium<br>Sodium                               | 89.7                                                  | 39.7                                                  | 200                             | mg/L<br>mg/L |
| Sulphur                                           | <3.0                                                  | <3.0                                                  | 200                             | mg/L         |
| MICROBIOLOGICAL                                   | -                                                     | -                                                     |                                 |              |
| Total coliforms                                   | 0                                                     | 2.0                                                   | ND                              | CFU/100mL    |
| Escherichia coli (E. coli)                        | 0                                                     | 0                                                     | ND<br>ND                        | CFU/100mL    |

<sup>\*</sup> Turbidity guideline applies to a surface water source or a groundwater source under the direct influence of surface water.

ND means none detectable.

Exceedances shown in red font.

## **Conclusions**

Two bedrock wells, **Well WID 69176** and **Well WID 69177** were recently pump tested for the proposed subdivision in mid July 2023 for periods of 12 hours each. Results of the pump testing indicates that each well is capable of meeting the minimum standards of 0.42 USgpm (1.58 L/min) or 2275 L/day for potable water supply under *Galiano Island Land Use Bylaw No. 127, 1999*, (Galiano Island Local Trust Committee, 2023). Based on the limited drawdowns observed during the pump testing, use of the wells for domestic residential purposes should have no measureable adverse effects on neighbouring water sources or cause sea water intrusion into the bedrock aquifer.

Water quality results for **Well WID 69176** met or exceeded the *Guidelines for Canadian Drinking Water-Summary Table* (Health Canada, 2022) for all parameters analyzed except for elevated levels of total manganese at 53.7  $\mu$ g/L. No coliform or E. coli bacteria were detected. Manganese levels above 20  $\mu$ g/L are an aesthetic concern and may result in staining of laundry and/or toilet fixtures.

Water quality results for **Well WID 69177** met or exceeded the *Guidelines for Canadian Drinking Water-Summary Table* (Health Canada, 2022) for all parameters analyzed except for elevated levels of total manganese at 185 µg/L and total coliforms at 2.0 CFU/100mL. No E. coli bacteria were detected. Total manganese levels above 20 µg/L are of aesthetic concern and may result in staining of laundry and/or toilet fixtures. Manganese above 120 µg/L is of a health concern and may cause neurological effects in young children consuming large amounts of water with elevated manganese levels. Further testing for dissolved manganese levels would be warranted before deciding whether water treatment measures may be required. Elevated total coliforms, are of a health concern and would require treatment. The low level detected, however, could be natural as a result of decaying organic matter present in the bedrock formations. There are no potential sources of contamination from animal wastes in proximity to the well.

### Recommendations

- 1. As a precautionary measure against any future potential sources of coliform bacteria, water from each well should be treated with an appropriately designed and maintained ultraviolet irradiation (UV) treatment system.
- 2. Further sampling for dissolved manganese of water from Well WID 69177 should be considered prior to designing any potential treatment system as the levels of manganese could be due to particulate matter.
- 3. Generally for low yielding water wells, apart from utilizing a pressure tank for the water distribution system, consideration should be given to installing a storage tank e.g. 1000 USgals, to reduce frequent cycling of the well pump during high water use periods.

- 4. For Well WID 69176, the pump should be set a few metres above the major water-producing fracture at 250 feet (78.2 m) to facilitate efficient cooling of the submersible pump motor. Similarly for Well WID 69177, the pump should be set a few metres above the major water-producing fracture at 179 feet (54.6 m)
- 5. Consideration should be given to equipping the discharge line from each well with a totalizing water flow meter to monitor and record well use with time and having a water level sounding tube installed for taking periodic water level measurements in each well. This information would be valuable in the event any future maintenance of the well or pumping system may be required.

### Closure

This report was prepared in accordance with generally accepted engineering, hydrogeological and consulting practices. It is intended for the prime use of Judy Hayes and Donna Knox in connection with its purpose as outlined under the scope of work for this project. This report is based on data and information available to the author from various sources at the time of its preparation and the findings of this report may therefore be subject to revision. Data and information supplied by others has not been independently confirmed or verified to be correct or accurate in all cases. Any errors, omissions or issues requiring clarification should be brought to the attention of the author. The author and Hy-Geo Consulting accepts no responsibility for damages suffered by any third party as a result of any unauthorized use of this report.

Respectfully submitted,

Alan P. Kohut P.Eng

Principal and Senior Hydrogeologist

HY-GEO CONSULTING

EGBC Permit to Practice Number 1001034

### References

- Galiano Island Local Trust Committee. 2023. *Land Use Bylaw 127, 1999*. (with amendments to June 2023). Internet website accessed August 3, 2023. https://islandstrust.bc.ca/document/galiano-island-local-trust-committee-land-use-bylaw-127-1999/
- Government of Canada. 2023a. Canadian Climate Normals. 1981-2010 Climate Normals & Averages. Internet website accessed July 30, 2023. http://climate.weather.gc.ca/climate\_normals/index\_e.html
- Government of Canada. 2023b. *Historical Climate Data*. Internet website accessed July 30, 2023. http://climate.weather.gc.ca/historical\_data/search\_historic\_data\_e.html
- Harrison, D. 1994. *Galiano Island Groundwater Study, 1994 A Review of Well Development and Groundwater Conditions on Galiano Island.* Report prepared for the Galiano Conservancy Association.
- Health Canada. 2022. Guidelines for Canadian Drinking Water Quality—Summary Table.
  Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch,
  Health Canada, Ottawa, Ontario. Internet website
  https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/ewh-semt/alt\_formats/pdf/pubs/water-eau/sum\_guide-res\_recom/summary-tables-sept-2022-eng.pdf
- Islands Trust. 2023. MapIT. Internet website mapit.islandstrust.bc.ca
- Kohut, A.P., and D.A. Johanson. 1998. *Assessment of Groundwater Availability and Quality, Galiano Island, British Columbia*. British Columbia Ministry of Environment, Victoria, British Columbia.
- Kohut, A.P., W.S. Hodge, D.A. Johanson, and D. Kalyn. 1984. *Natural Seasonal Response of Groundwater Levels in Fractured Bedrock Aquifers of the Southern Coastal Region of British Columbia.* Proceedings of International Groundwater Symposium on Groundwater Utilization and Contaminant Hydrogeology, Montreal, Quebec. International Association of Hydrogeologists/Canadian National Chapter.
- Muller, J. E. and J.A. Jeletzky. 1970. *Geology of the Upper Cretaceous Nanaimo Group, Vancouver Island and Gulf Islands, British Columbia.* Geological Survey of Canada Paper 69-25.
- Province of British Columbia. 2010. *Guide to Conducting Well Pumping Tests*. Internet website, https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water-wells/guide\_to\_conducting\_pumping\_tests.pdf
- Province of British Columbia. 2023a. *British Columbia Water Resources Atlas*. Internet website accessed July 30, 2023. https://maps.gov.bc.ca/ess/hm/wrbc/

- Province of British Columbia. 2023b. *Groundwater Observation Well Network.*Internet website accessed July 31, 2023.
  https://aqrt.nrs.gov.bc.ca/Report/Show/Groundwater.OW258.Groundwater%20Level%20St atistics%20Chart/
- Thomson, P. 2023. *Plan of Proposed Subdivision, 490 Gardner Road.* Drawing prepared April 10, 2023. Peter Thomson, BCLS, CLS. Galiano Island, British Columbia.
- Waterline Resources Inc. 2011. *Galiano Groundwater Study*. Report submitted to Islands Trust, March 31, 2011, File WL11-1755.

# Appendix A Well Drilling Records



Well Construction Report ☐ Well Alteration Report

RED WILLIAMS WELL DRILLING LTD

985-PART-987-0004XC04-184-06-184-997-1W5
phone faxle mail here, it desired.
(250) 248-3552

| Ministry Well ID Plate Number | 69  | 176  | _ |
|-------------------------------|-----|------|---|
| Where ID Plate is attached:   | CAS | sing | _ |
| Ministry Well Tag Number:     |     |      |   |

| THE POST OFFICE AND PARTY OF THE PARTY OF TH | THE REAL PROPERTY.     | OCCUPATION OF PERSONS | THE R. P. LEWIS CO., LANSING, MICH. | nitions of abbrevia                  | THE OWNER OF TAXABLE PARTY. |       |                    |             |                    |           |                |      |           |          |             |      |       |           |           |            |                 |      |        |             |           |                      |                  |                   |          |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|-------------------------------------|--------------------------------------|-----------------------------|-------|--------------------|-------------|--------------------|-----------|----------------|------|-----------|----------|-------------|------|-------|-----------|-----------|------------|-----------------|------|--------|-------------|-----------|----------------------|------------------|-------------------|----------|--------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |                                     | see note 2): W                       |                             |       |                    |             |                    | Pate      | SUIT           | oply | _<br>/ SV | ste      | m [         |      |       |           |           |            |                 |      |        |             |           | NE strial            |                  |                   | ):       |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |                                     | M/DD): 2023                          |                             | 1/3   | 25                 | 5           |                    | ato       | oup            | راط  |           |          |             |      |       |           |           |            |                 |      |        |             |           | 553                  |                  | 4/2               | 27       |                    |
| Person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Resp                   | onsib                 | le for \                            | Nork (print clearly)                 | : Nan                       | ne (  | first              | , la        | st) (              | see       | not            | e 3  | 3): _     | T        | Ho          | )h   | 0     | A         | S         | V          | 1               | 71   | -      |             |           | 20                   | >                | 7.1               | 20       | 2003               |
| Consultar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt (if a               | pplicab               | le; nam                             | e and company):                      |                             |       |                    | 01420.41    |                    |           |                |      | _         |          |             |      |       | ).        | 93]'=     |            |                 |      | 5      |             |           | ME                   |                  |                   | 100      |                    |
| DECLARATI<br>Protection R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                       | ction, well                         | alteration or well decomm            |                             |       | ie cas             |             |                    |           |                |      |           |          |             |      | with  | the 2     |           | iirem<br>H |                 |      |        |             |           | 1                    |                  | the Grou          |          | ter                |
| Owner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | name                   | ):                    |                                     |                                      |                             |       |                    |             |                    |           |                |      |           |          | 1           |      | J     |           |           |            |                 |      |        |             |           |                      |                  |                   |          |                    |
| Mailing a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ddre                   | ss:                   | ato 6):                             | Address: Street no                   | Δ                           | 21    |                    | Tow         | _                  | amı       | e. <b>C</b>    | 2    | Δŀ        | 21       |             |      | F     | 6         | )         | Pro        | v.              | 17   | 70     | MD          |           | Postal               | Code             | 20 [              | El       | ADD                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | cription              | n: Lot                              | 1 Plan V                             | P                           | 30    | 25                 | D.L.        | 1                  | N         | ح ل            | 5    | _ B       | loc      | k           | /    | 2     | 1+        |           | Sec        |                 |      |        |             |           | Rg.                  | La               | nd Dist           | rict _   | 166                |
| or) PII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 041                    | 645                   | - 0-                                | Description                          | SLL                         | ell I | ocat               | tipr        | s (at              | tac<br>40 | h sk           | etc  | en, i     | 1 n      | ec.         | P    | T     | #         | 1         | 45         | )               | E    | 以<br>文 | 71          | 6         | 3/21                 | 7                | 300               | 1111     | DAFI               |
| Well Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                       | 1.                                  |                                      |                             |       |                    | +           | _                  | -         | <b>-</b>       |      | 00        |          |             |      |       |           |           |            |                 |      |        |             |           |                      |                  | 214               | - 14 -   |                    |
| NAD 83:<br>(see no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | te 7)                  |                       | (                                   | and                                  | UTM                         | No    | rthir              | ng:         |                    | 5.        | 91             | 4    | 7         | 71       |             | m    | •     | or        | L         | .on        | git             | ude  | e: _   | 1335        |           | 3):                  |                  |                   |          |                    |
| Method<br>Orientati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                       | 6                                   | tary □ dual rotary<br>I □ horizontal | /                           | cab   |                    |             |                    |           | d rot<br>vatio |      | 11 11     | 0<br>0   | yge         |      |       |           | ving      |            |                 |      | -      |             |           | ner (spe<br>te 9):   |                  | Acc               | 202      | ACY -              |
| Litholog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | jic de                 | escript               | ion (se                             | ee notes 10-15)                      |                             |       | Manager Cardinates |             |                    |           |                |      |           |          |             |      |       |           |           |            |                 |      |        |             |           |                      | •                |                   |          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |                                     |                                      |                             | Moi   | sture              | 9           |                    |           |                | Со   | lour      | r        |             |      |       |           |           | Н          | ard             | nes  | ss     |             |           |                      |                  |                   |          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |                                     |                                      |                             |       |                    |             |                    |           |                |      | Position  | onled    |             |      |       |           |           |            |                 |      |        | Hard        | ff        |                      |                  | vations           |          |                    |
| ft ft (bgl) (bg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       | Vlateria                            | Description                          | Dry                         | Damp  | Moist              | Wet         | Black              | Blue      | Brown          |      | Grey      | vari-col | Ked         | lan  | White | Dense     | Hard      | Loose      | Medium          | Soft | Stiff  | Very Ha     | Very Soft | houle                | -                |                   | ter bea  | aring flow         |
| 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                      | SILT/                 | COB                                 | BLE/ORGANI                           |                             |       |                    |             |                    | 1         |                |      |           |          |             |      |       |           |           |            |                 |      |        |             |           | Fb                   | AC               | TUE               | ,E2(     | (a)                |
| 5 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 8                    | SAn                   | pSt                                 | oné                                  |                             |       |                    |             |                    | 1         | <u> </u>       |      |           |          |             |      |       |           |           |            |                 |      |        |             |           | 11                   | 3                | )- ¿              | 25       |                    |
| 15 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75                     | Anı                   | T/CC                                | ne                                   |                             |       |                    |             |                    |           |                |      | 1         |          |             |      |       |           |           |            |                 |      |        |             |           |                      | 31 n             | 7-5               | ) S      |                    |
| 363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 05                     | SAI                   | 200                                 | STONE                                |                             |       |                    |             |                    | ,         |                | ١    | V         |          |             |      |       |           |           |            |                 |      |        |             |           |                      |                  | 25                | õ        | 3 4 2 3 3 5 5      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |                                     |                                      |                             |       |                    |             |                    |           |                |      |           |          |             |      |       |           |           |            |                 |      |        |             |           |                      |                  |                   |          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |                                     |                                      |                             |       |                    |             |                    |           |                |      |           |          |             |      |       |           |           |            |                 |      |        |             |           |                      |                  |                   |          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |                                     |                                      |                             |       |                    |             |                    |           |                |      |           |          |             |      |       |           |           |            |                 |      |        |             |           |                      |                  |                   |          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |                                     |                                      |                             |       |                    |             |                    |           |                |      |           |          |             |      |       | -         |           |            |                 |      |        |             |           |                      |                  |                   |          |                    |
| Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                       | duction                             | □ Open Hole □ St                     | teel R                      | eme   | oved               |             |                    |           |                |      | 9         | Scr      | eeı         | n d  | eta   | ails      | 3:        |            |                 |      | -      |             |           |                      |                  |                   |          | pa security        |
| From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Т                      |                       | Dia                                 | Casing Material/Oper                 | 1 Hole                      |       | Wall               |             |                    | rive      |                |      |           |          | ron<br>(bgl |      | ft    | To<br>(bg |           |            | <b>Di</b><br>in |      |        |             |           |                      | ype<br>note 1    | 17)               |          | Slot Size          |
| ft (bgl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ft (b                  |                       | in                                  | (see note 16)                        |                             |       | icknes             |             | S                  | hoe       | -              |      |           |          |             |      |       |           |           |            |                 |      |        |             |           |                      |                  |                   |          |                    |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18                     |                       | 6                                   | 8TEEL                                |                             | • (   | 21                 | 9           |                    |           |                |      | -         |          |             |      |       | 360       |           |            |                 |      | -      |             |           |                      |                  |                   |          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |                                     |                                      |                             |       |                    |             |                    |           |                |      |           |          |             |      |       |           | 609       |            |                 |      |        |             |           | oj paren             | ka               |                   |          | 42                 |
| Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | seal:                  | Type:                 | BE                                  | OTOVITE                              | Dep                         | oth:  |                    | 18          | ,                  | ff        |                |      |           |          |             |      |       |           |           |            |                 |      |        |             |           | □ Unc<br>ze          | ased             | hole              |          |                    |
| Method o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f insta                | allation:             | Coure                               | ed Dumped                            | Thi                         | ckne  | ess:               |             | 2                  | u ii      | 1              |      | S         | Scre     | een         | ma   | ter   | ial:      |           | Stair      | nle             | ss s | stee   | el          | P         | lastic [             |                  |                   |          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PVC                    |                       | Other (                             | specify):                            |                             |       |                    |             |                    |           |                |      | S         | Scre     | een         | bot  | tton  | n: [      | В         | ail        |                 | Plug | 9 [    | P           | late      | Slotted<br>Oth       | er (sp           | ecify): _         |          |                    |
| Diameter From:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                       |                                     |                                      |                             |       |                    |             |                    | ir        | 1              |      |           |          |             |      |       |           |           |            |                 |      |        |             |           |                      |                  |                   | ness:    | in                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NAME OF TAXABLE PARTY. |                       | -                                   | _ ft (bgl) To:                       | -                           | -     | -                  | 10000000    | THE REAL PROPERTY. |           |                |      | _         | -        |             |      |       | -         |           |            |                 |      |        | -           |           |                      |                  |                   | _        |                    |
| Develor<br>Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | ,                     |                                     | ☐ Bailing ☐ Jetting                  | g 🗆 F                       | Pum   | ping               | g [         | Su                 | rgin      | ig             |      | Oth       | er (     | spe         | cify | /): _ |           |           |            |                 |      |        |             |           | Total d              | uratio           | n: <b>c</b>       |          | hrs                |
| Well yie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ld es                  | stimate               | ed by:                              | Pumping XAir Duration                | lifting                     | 2     | □ B:               | ailir       | ng                 |           | Oth            | er ( | (spe      | ecif     | y): _       | . 1  | 5     | 5         | ,         | ft /k      | otor            | -1   |        |             |           | Drawdo               | own.             | the second        | ft (bt   | 00)                |
| Hydro-fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | actur                  | ing: 🗆 Y              | es                                  | □ No Increase                        | i                           | ell ` | '<br>Yield         | ııs<br>I du | e to               | Ну        | dro-           | frac | cturi     | ing      | :           |      |       |           |           | US         | gpr             | n    |        |             |           | Diawu                | J VVI I          |                   | _ 11 (01 |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | _                     |                                     | ole collected: □ Yes                 |                             |       |                    |             |                    |           |                |      |           |          | al v        |      |       |           |           |            |                 |      |        |             | inio      | hed we               | II dont          | h. 20             | 5# (L    | agl)               |
| Characte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ristics                | s: 🗆 Clea             | ar 🗆 (                              | Water o                              |                             |       |                    |             |                    |           |                |      | F         | ina      | al ca       | sin  | ig s  | tick      | k up      | ): _       | 2               | 1"   | _ ir   | 1 [         | Оер       | th to be             | drock            | 5                 | _ ft (b  | ogl)               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |                                     | /):<br>cks □ Brown                   | Clea                        | ar/no | ne                 |             | gre                | ey.       |                |      |           |          |             |      |       |           |           |            |                 |      |        |             |           | ed well y<br>or Arte |                  |                   |          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |                                     | ange                                 |                             |       |                    |             | _                  |           |                |      | Т         | Гур      | e of        | WE   | ell c | ар        | <u>'V</u> | E          | K               | m    | pr     | 0           | N<br>OC   | /ell disir           | fecte            | d:XYe             | s 🗆 l    | ft<br>No           |
| Commer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | its:                   |                       |                                     |                                      |                             |       |                    |             |                    | _         |                |      |           |          |             |      |       |           |           |            |                 |      | Cor    | ofir<br>gin | mai       | tion/alto            | ernati<br>Istruc | ve spe<br>tion re | cs. at   | tached<br>attached |



| X | Well | Construction Report                   |
|---|------|---------------------------------------|
| 6 | Well | Construction Report Alteration Report |

RED WILLIAMS WELL DRILLING LTD Stamps to parally the paralles of the state of the s

| Ministry Well ID Plate Number: | 691 | 77 |  |
|--------------------------------|-----|----|--|
| Where ID Plate is attached:    |     |    |  |
| Ministry Well Tag Number:      |     |    |  |

| See reverse for notes & definitions of abbreviations.                                                                                                                                                                                                                                                                                                           |                                                                                   |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Well Class: Class of well (see note 2): WATER  Water supply wells: indicate intended water use: Private do  Start date of work (YYYY/MM/DD): 2023/04/                                                                                                                                                                                                           | lomestic  water supply                                                            |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Person Responsible for Work (print clearly): Name (Person who completed the work: Thomas Will Consultant (if applicable; name and company): DECLARATION: Well construction, well alteration or well decommission, as the Protection Regulation.  Signature                                                                                                      | LLIAMS                                                                            | Registration no. (see                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| or PID: 004-695-844 and Description of well I                                                                                                                                                                                                                                                                                                                   | Street name                                                                       | Block Sec. 7 h, if gec.): WITHIN PR                                                                                              | Postal Code V9 P 1 Y A Town GALLANO ISLAND Twp. Rg. Land District 6 OPERTY BOUNDARIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (655.1515.7)                                                                                                                                                                                                                                                                                                                                                    | asting: 475028<br>orthing: 541469<br>ble tool   mud rotary<br>Ground elevation: _ | m Longitude                                                                                                                      | with the control of t |
| Lithologic description (see notes 10-15)                                                                                                                                                                                                                                                                                                                        |                                                                                   |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| From To ft ft (bgl) (bgl) Material Description                                                                                                                                                                                                                                                                                                                  | Moisture Col                                                                      | e e e                                                                                                                            | Observations (e.g. other geological materials (e.g. boulders), est. water bearing flow (USgpm))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 2 81LT/DRGANICS 2 35 8AND8TDNE 35 170 8AND8TDNE 170 179 8HALEY 8AND8TDNE 179 2058AND8TDNE                                                                                                                                                                                                                                                                     |                                                                                   |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ft(bgl) ft (bgl) in (see note 16) Th                                                                                                                                                                                                                                                                                                                            | Wall Drive Shoe                                                                   | From To Dia ft (bgl) in                                                                                                          | Type (see note 17) Slot Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Surface seal: Type: Poured Pumped Thicknet Backfill: Type: Depth:  Liner: PVC Other (specify): Diameter: in Thickness: From: ft (bgl) To:                                                                                                                                                                                                                       | ness: in n: ft in ft (bgl)                                                        | Screen material: ☐ Stainless s<br>Screen opening: ☐ Continuous<br>Screen bottom: ☐ Bail ☐ Plug                                   | □ Pipe size steel □ Plastic □ Other (specify): s slot □ Slotted □ Perforated pipe □ □ Plate □ Other (specify): ft To: ft Thickness: in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Perforated: From:ft (bgl) To:  Developed by: XAir lifting Bailing Jetting Pum  Notes:  Well yield estimated by: Pumping Air lifting  Rate: USgpm Duration:2                                                                                                                                                                                                     | mping Surging Other (                                                             | specify): ft (btoc)                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hydro-fracturing: □ Yes □ No       □ No       Increase in Well Yes □ No         Water Quality: Water sample collected: □ Yes □ No         Date (YYYY/MM/DD) □ Water quality od         Characteristics: □ Clear □ Cloudy       □ Fresh □ Gas         Sediment □ Other (specify): □       □ Clear/nd         □ Slight colour/milky □ Orange □ Other (specify): □ | dour:<br>Salty □                                                                  | Final well completion da Total depth drilled: 205 Final casing stick up: 12" SWL: ft (btoc) Artesian flow: Type of well cap: 12" | ta: _ft Finished well depth: 205 ft (bgl) _in Depth to bedrock: 2 ft (bgl) Estimated well yield: 1 USgpm _USgpm, or Artesian pressure: ft  Well disinfected: Yes \( \text{No} \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

 $\hfill\square$  Original well construction report attached

# Appendix B Pumping Test Results

### **APPENDIX B**

# Pumping Test Data for Subject Well WID 69176

Project: WID 69176 Reference: all readings from top of sounding tube

Client: Donna Knox

Location: 490 Gardner Rd., Galiano Island Stick up: 0.61 m

Date of Test: July 10 and 11/23 Observation Wells: WID 69177

Test Conducted by: Red Williams Well Drilling

July 10, 2023 July 11, 2023 Pumped Well: 92.96 m deep Pump Start Time: 10:00 PM 4.164 L/min (1.1 USgpm) 10:00 AM

Pumping Rate: Static Water Level: Pump End Time: Analysis by: 16.30 m A. Kohut, P.Eng.

#### **Drawdown Data: Recovery Data:**

| Time      | Water Level | Drawdown | Time t    | Time t'   | Water Level | t/t'    | Residual        |
|-----------|-------------|----------|-----------|-----------|-------------|---------|-----------------|
| (minutes) | (m)         | (m)      | (minutes) | (minutes) | (m)         |         | Drawdown<br>(m) |
| 0.5       | 16.42       | 0.12     | 720.5     | 0.5       | 22.30       | 1441.00 | 6.00            |
| 1.0       | 16.59       | 0.29     | 721       | 1         | 22.20       | 721.00  | 5.90            |
| 1.5       | 16.72       | 0.42     | 721.5     | 1.5       | 22.10       | 481.00  | 5.80            |
| 2.0       | 16.82       | 0.52     | 722.5     | 2.5       | 21.90       | 289.00  | 5.60            |
| 2.5       | 16.90       | 0.60     | 723       | 3         | 21.80       | 241.00  | 5.50            |
| 3         | 16.97       | 0.67     | 723.5     | 3.5       | 21.70       | 206.71  | 5.40            |
| 3.5       | 17.05       | 0.75     | 724       | 4         | 21.61       | 181.00  | 5.31            |
| 4         | 17.11       | 0.81     | 724.5     | 4.5       | 21.52       | 161.00  | 5.22            |
| 4.5       | 17.17       | 0.87     | 725       | 5         | 21.44       | 145.00  | 5.14            |
| 5         | 17.22       | 0.92     | 726       | 6         | 21.26       | 121.00  | 4.96            |
| 6         | 17.35       | 1.05     | 727       | 7         | 21.10       | 103.86  | 4.80            |
| 7         | 17.44       | 1.14     | 728       | 8         | 20.940      | 91.00   | 4.64            |
| 8         | 17.58       | 1.28     | 729       | 9         | 20.810      | 81.00   | 4.51            |
| 9         | 17.68       | 1.38     | 730       | 10        | 20.67       | 73.00   | 4.37            |
| 10        | 17.78       | 1.48     | 732       | 12        | 20.42       | 61.00   | 4.12            |
| 12        | 17.88       | 1.58     | 734       | 14        | 20.19       | 52.43   | 3.89            |
| 14        | 18.13       | 1.83     | 736       | 16        | 19.99       | 46.00   | 3.69            |
| 16        | 18.25       | 1.95     | 738       | 18        | 19.81       | 41.00   | 3.51            |
| 18        | 18.37       | 2.07     | 730       | 20        | 19.650      | 36.50   | 3.35            |
| 20        | 18.47       | 2.17     | 745       | 25        | 19.35       | 29.80   | 3.05            |
| 25        | 18.68       | 2.38     | 750       | 30        | 19.150      | 25.00   | 2.85            |
| 30        | 18.86       | 2.56     | 760       | 40        | 18.89       | 19.00   | 2.59            |
| 35        | 19.02       | 2.72     | 765       | 45        | 18.83       | 17.00   | 2.53            |
| 40        | 19.15       | 2.85     | 770       | 50        | 18.78       | 15.40   | 2.48            |
| 45        | 19.28       | 2.98     | 775       | 55        | 18.75       | 14.09   | 2.45            |
| 50        | 19.36       | 3.06     | 780       | 60        | 18.71       | 13.00   | 2.41            |
| 55        | 19.45       | 3.15     | 790       | 70        | 18.66       | 11.29   | 2.36            |
| 60        | 19.52       | 3.22     | 800       | 80        | 18.61       | 10.00   | 2.31            |
| 70        | 19.65       | 3.35     | 810       | 90        | 18.57       | 9.00    | 2.27            |
| 80        | 19.76       | 3.46     | 820       | 100       | 18.54       | 8.20    | 2.24            |
| 90        | 19.86       | 3.56     | 830       | 110       | 18.51       | 7.55    | 2.21            |
| 100       | 19.95       | 3.65     | 840       | 120       | 18.50       | 7.00    | 2.20            |
| 110       | 20.03       | 3.73     | 870       | 150       | 18.4        | 5.80    | 2.10            |
| 120       | 20.10       | 3.80     | 900       | 180       | 18.33       | 5.00    | 2.03            |
| 150       | 20.28       | 3.98     | 930       | 210       | 18.27       | 4.43    | 1.97            |
| 180       | 20.46       | 4.16     | 960       | 240       | 18.21       | 4.00    | 1.91            |
| 210       | 20.64       | 4.34     | 1020      | 300       | 18.117      | 3.40    | 1.82            |
| 240       | 20.79       | 4.49     | 1080      | 360       | 18.024      | 3.00    | 1.72            |
| 270       | 20.93       | 4.63     | 1140      | 420       | 17.962      | 2.71    | 1.66            |
| 300       | 21.04       | 4.74     | 1200      | 480       | 17.89       | 2.50    | 1.59            |
| 330       | 21.11       | 4.81     | 1260      | 540       | 17.828      | 2.33    | 1.53            |
| 360       | 21.25       | 4.95     | 1320      | 600       | 17.777      | 2.20    | 1.48            |
| 390       | 21.47       | 5.17     | 1380      | 660       | 17.715      | 2.09    | 1.42            |
| 420       | 21.49       | 5.19     | 1440      | 720       | 17.663      | 2.00    | 1.36            |
| 450       | 21.59       | 5.29     |           |           |             |         |                 |
| 480       | 21.70       | 5.40     |           |           |             |         |                 |

# Drawdown Data:

# **Recovery Data:**

| Time<br>(minutes) | Water Level<br>(m)      | Drawdown<br>(m) | Time t (minutes) | Time t' (minutes) | Water Level<br>(m) | t/t' | Residual<br>Drawdown<br>(m) |
|-------------------|-------------------------|-----------------|------------------|-------------------|--------------------|------|-----------------------------|
| 540               | 21.87                   | 5.57            |                  |                   |                    |      |                             |
| 600               | 22.05                   | 5.75            |                  |                   |                    |      |                             |
| 660               | 22.21                   | 5.91            |                  |                   |                    |      |                             |
| 720               | 22.36                   | 6.06            |                  |                   |                    |      |                             |
|                   |                         |                 |                  |                   |                    |      |                             |
|                   | Data from<br>datalogger |                 |                  |                   |                    |      |                             |

### **APPENDIX B**

# Pumping Test Data for Subject Well WID 69177

Reference: all readings from top of sounding tube Project: WID 69177

Client: Judy Hayes

Location: 490 Gardner Rd., Galiano Island Stick up: 1.0 m

Date of Test: July 11 and 12/23 Observation Wells: WID 69176

Test Conducted by: Red Williams Well Drilling

Pumped Well: Pump Start Time: July 11, 2023 62.48 m deep 10:00 PM Pumping Rate: Static Water Level: Pump End Time: Analysis by: 3.823 L/min (1.01 USgpm) July 12, 2023 10:00 AM

9.40 m A. Kohut, P.Eng.

#### **Recovery Data: Drawdown Data:**

| Time      | Water Level | Drawdown | Time t    | Time t'   | Water Level | t/t'    | Residual        |
|-----------|-------------|----------|-----------|-----------|-------------|---------|-----------------|
| (minutes) | (m)         | (m)      | (minutes) | (minutes) | (m)         |         | Drawdown<br>(m) |
| 0.5       | 9.70        | 0.30     | 720.5     | 0.5       | 15.11       | 1441.00 | 5.71            |
| 1.0       | 9.77        | 0.37     | 721       | 1         | 15.01       | 721.00  | 5.61            |
| 1.5       | 9.85        | 0.45     | 721.5     | 1.5       | 14.91       | 481.00  | 5.51            |
|           |             |          | 722.0     | 2.0       | 14.82       | 361.00  | 5.42            |
| 2.0       | 9.93        | 0.53     | 722.5     | 2.5       | 14.73       | 289.00  | 5.33            |
| 2.5       | 10.00       | 0.60     | 723       | 3         | 14.65       | 241.00  | 5.25            |
| 3         | 10.08       | 0.68     | 723.5     | 3.5       | 14.56       | 206.71  | 5.16            |
| 3.5       | 10.15       | 0.75     | 724       | 4         | 14.48       | 181.00  | 5.08            |
| 4         | 10.22       | 0.82     | 724.5     | 4.5       | 14.40       | 161.00  | 5.00            |
| 4.5       | 10.29       | 0.89     | 725       | 5         | 14.33       | 145.00  | 4.93            |
| 5         | 10.38       | 0.98     | 726       | 6         | 14.18       | 121.00  | 4.78            |
| 6         | 10.49       | 1.09     | 727       | 7         | 14.05       | 103.86  | 4.65            |
| 7         | 10.61       | 1.21     | 728       | 8         | 13.920      | 91.00   | 4.52            |
| 8         | 10.73       | 1.33     | 729       | 9         | 13.800      | 81.00   | 4.40            |
| 9         | 10.85       | 1.45     | 730       | 10        | 13.68       | 73.00   | 4.28            |
| 10        | 10.96       | 1.56     | 732       | 12        | 13.45       | 61.00   | 4.05            |
| 12        | 11.22       | 1.82     | 734       | 14        | 13.25       | 52.43   | 3.85            |
| 14        | 11.40       | 2.00     | 736       | 16        | 13.06       | 46.00   | 3.66            |
| 16        | 11.54       | 2.14     | 738       | 18        | 12.90       | 41.00   | 3.50            |
| 18        | 11.69       | 2.29     | 730       | 20        | 12.740      | 36.50   | 3.34            |
| 20        | 11.90       | 2.50     | 745       | 25        | 12.39       | 29.80   | 2.99            |
| 25        | 12.17       | 2.77     | 750       | 30        | 12.100      | 25.00   | 2.70            |
| 30        | 12.45       | 3.05     | 755       | 35        | 11.85       | 21.57   | 2.45            |
| 35        | 12.69       | 3.29     | 760       | 40        | 11.66       | 19.00   | 2.26            |
| 40        | 12.88       | 3.48     | 765       | 45        | 11.49       | 17.00   | 2.09            |
| 45        | 13.06       | 3.66     | 770       | 50        | 11.33       | 15.40   | 1.93            |
| 50        | 13.22       | 3.82     | 775       | 55        | 11.20       | 14.09   | 1.80            |
| 55        | 13.38       | 3.98     | 780       | 60        | 11.09       | 13.00   | 1.69            |
| 60        | 13.48       | 4.08     | 790       | 70        | 10.88       | 11.29   | 1.48            |
| 70        | 13.69       | 4.29     | 800       | 80        | 10.75       | 10.00   | 1.35            |
| 80        | 13.85       | 4.45     | 810       | 90        | 10.63       | 9.00    | 1.23            |
| 90        | 14.00       | 4.60     | 820       | 100       | 10.53       | 8.20    | 1.13            |
| 100       | 14.11       | 4.71     | 830       | 110       | 10.45       | 7.55    | 1.05            |
| 110       | 14.20       | 4.80     | 840       | 120       | 10.38       | 7.00    | 0.98            |
| 120       | 14.28       | 4.88     | 870       | 150       | 10.23       | 5.80    | 0.83            |
| 150       | 14.44       | 5.04     | 900       | 180       | 10.12       | 5.00    | 0.72            |
| 180       | 14.57       | 5.17     | 930       | 210       | 10.05       | 4.43    | 0.65            |
| 210       | 14.69       | 5.29     | 960       | 240       | 9.99        | 4.00    | 0.59            |
| 240       | 14.75       | 5.35     |           |           |             |         |                 |
| 270       | 14.81       | 5.41     |           |           |             |         |                 |
| 300       | 14.83       | 5.43     |           |           |             |         |                 |
| 330       | 14.89       | 5.49     |           |           |             |         |                 |
| 360       | 14.92       | 5.52     |           |           |             |         |                 |
| 390       | 14.98       | 5.58     |           |           |             |         |                 |
| 420       | 15.00       | 5.60     |           |           |             |         |                 |
| 450       | 15.03       | 5.63     |           |           |             |         |                 |

# Drawdown Data:

# **Recovery Data:**

| Time<br>(minutes) | Water Level<br>(m) | Drawdown<br>(m) | Time t<br>(minutes) | Time t'<br>(minutes) | Water Level<br>(m) | t/t' | Residual<br>Drawdown<br>(m) |
|-------------------|--------------------|-----------------|---------------------|----------------------|--------------------|------|-----------------------------|
| 480               | 15.06              | 5.66            |                     |                      |                    |      |                             |
| 540               | 15.08              | 5.68            |                     |                      |                    |      |                             |
| 600               | 15.11              | 5.71            |                     |                      |                    |      |                             |
| 660               | 15.15              | 5.75            |                     |                      |                    |      |                             |
| 720               | 15.18              | 5.78            |                     |                      |                    |      |                             |
|                   |                    |                 |                     |                      |                    |      |                             |
|                   |                    |                 |                     |                      |                    |      |                             |

# Appendix C

# **Laboratory Water Quality Sampling Results**



Your Project #: 490 GARDNER Your C.O.C. #: WI034252

Attention: AL KOHUT
HY-GEO CONSULTING
4470 Arsens Place
VICTORIA, BC
Canada V8Z 2M9

Report Date: 2023/07/18

Report #: R3366518 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C351946 Received: 2023/07/11, 14:40

Sample Matrix: Drinking Water # Samples Received: 1

| •                                        |          | Date       | Date       |                   |                      |
|------------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                                 | Quantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method    |
| Alkalinity @25C (pp, total), CO3,HCO3,OH | 1        | N/A        | 2023/07/13 | BBY6SOP-00026     | SM 24 2320 B m       |
| Chloride/Sulphate by Auto Colourimetry   | 1        | N/A        | 2023/07/13 | BBY6SOP-00011 /   | SM24-4500-CI/SO4-E m |
|                                          |          |            |            | BBY6SOP-00017     |                      |
| Colour (True) by Kone Lab                | 1        | N/A        | 2023/07/12 | BBY6SOP-00057     | SM 23 2120 C m       |
| Conductivity @25C                        | 1        | N/A        | 2023/07/13 | BBY6SOP-00026     | SM 24 2510 B m       |
| Fluoride                                 | 1        | N/A        | 2023/07/17 | BBY6SOP-00048     | SM 24 4500-F C m     |
| Hardness Total (calculated as CaCO3) (1) | 1        | N/A        | 2023/07/15 | BBY WI-00033      | Auto Calc            |
| Mercury (Total) by CV                    | 1        | 2023/07/13 | 2023/07/13 | AB SOP-00084      | BCMOE BCLM Oct2013 m |
| Na, K, Ca, Mg, S by CRC ICPMS (total)    | 1        | N/A        | 2023/07/15 | BBY WI-00033      | Auto Calc            |
| Elements by CRC ICPMS (total)            | 1        | N/A        | 2023/07/14 | BBY7SOP-00003 /   | EPA 6020b R2 m       |
|                                          |          |            |            | BBY7SOP-00002     |                      |
| Nitrate + Nitrite (N)                    | 1        | N/A        | 2023/07/12 | BBY6SOP-00010     | SM 23 4500-NO3- I m  |
| Nitrite (N) by CFA                       | 1        | N/A        | 2023/07/12 | BBY6SOP-00010     | SM 23 4500-NO3- I m  |
| Nitrogen - Nitrate (as N)                | 1        | N/A        | 2023/07/13 | BBY WI-00033      | Auto Calc            |
| pH @25°C (2)                             | 1        | N/A        | 2023/07/13 | BBY6SOP-00026     | SM 24 4500-H+ B m    |
| Total Dissolved Solids (Filt. Residue)   | 1        | 2023/07/14 | 2023/07/17 | BBY6SOP-00033     | SM 24 2540 C m       |
| Total Coliform & E.Coli by MF-Chromocult | 1        | N/A        | 2023/07/12 | BBY4SOP-00143     | Merck KGaA Version 1 |
| Turbidity                                | 1        | N/A        | 2023/07/12 | BBY6SOP-00027     | SM 23 2130 B m       |

### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.



Your Project #: 490 GARDNER Your C.O.C. #: WI034252

Attention: AL KOHUT
HY-GEO CONSULTING
4470 Arsens Place
VICTORIA, BC
Canada V8Z 2M9

Report Date: 2023/07/18

Report #: R3366518 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C351946 Received: 2023/07/11, 14:40

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- \* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) "Total Hardness" was calculated from Total Ca and Mg concentrations and may be biased high (Hardness, or Dissolved Hardness, calculated from Dissolved Ca and Mg, should be used for compliance if available).
- (2) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas endeavours to analyze samples as soon as possible after receipt.

### **Encryption Key**

Please direct all questions regarding this Certificate of Analysis to: Customer Solutions, Western Canada Customer Experience Team Email: customersolutionswest@bureauveritas.com Phone# (604) 734 7276

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.

# **DRINKING WATER PACKAGE (NON-REGULATED)**

| Bureau Veritas ID      |                                    |           |            |            |            | BUI440    |        |          |
|------------------------|------------------------------------|-----------|------------|------------|------------|-----------|--------|----------|
| Sampling Date          |                                    |           |            |            |            |           |        |          |
| COC Number             |                                    |           |            |            |            | WI034252  |        |          |
|                        |                                    | UNITS     | MAC        | AO         | OG         | WID 69176 | RDL    | QC Batch |
| ANIONS                 |                                    |           |            |            |            |           | •      |          |
| Nitrite (N)            |                                    | mg/L      | 1          | -          | -          | <0.0050   | 0.0050 | B031618  |
| Calculated Paramet     | ers                                | <u> </u>  |            |            |            |           | !      |          |
| Total Hardness (CaC    | :03)                               | mg/L      | -          | -          | -          | 35.8      | 0.50   | B029061  |
| Nitrate (N)            |                                    | mg/L      | 10         | -          | -          | <0.020    | 0.020  | B029303  |
| Misc. Inorganics       |                                    |           | <u>!</u>   |            |            |           |        |          |
| Conductivity           |                                    | uS/cm     | -          | -          | -          | 460       | 2.0    | B031571  |
| рН                     |                                    | pН        | -          | -          | 7.0:10.5   | 8.27      | N/A    | B031567  |
| Total Dissolved Solid  | ds                                 | mg/L      | -          | 500        | -          | 270       | 10     | B034173  |
| Anions                 |                                    |           | I .        |            |            |           |        |          |
| Alkalinity (PP as CaC  | (03)                               | mg/L      | -          | -          | -          | <1.0      | 1.0    | B031568  |
| Alkalinity (Total as C | CaCO3)                             | mg/L      | -          | -          | -          | 210       | 1.0    | B031568  |
| Bicarbonate (HCO3)     |                                    | mg/L      | -          | -          | -          | 250       | 1.0    | B031568  |
| Carbonate (CO3)        |                                    | mg/L      | -          | -          | -          | <1.0      | 1.0    | B031568  |
| Dissolved Fluoride (F) |                                    | mg/L      | 1.5        | -          | - 0.30     |           | 0.050  | B036370  |
| Hydroxide (OH)         |                                    | mg/L      | -          | -          | -          | <1.0      | 1.0    | B031568  |
| Chloride (Cl)          |                                    | mg/L      | -          | 250        | -          | 16        | 1.0    | B032704  |
| Sulphate (SO4)         |                                    | mg/L      | -          | 500        | -          | 6.1       | 1.0    | B032704  |
| MISCELLANEOUS          |                                    | •         | •          |            |            |           |        |          |
| True Colour            |                                    | Col. Unit | -          | 15         | -          | <5.0      | 5.0    | B030877  |
| Nutrients              |                                    | •         | •          |            |            |           |        |          |
| Nitrate plus Nitrite ( | (N)                                | mg/L      | -          | -          | -          | <0.020    | 0.020  | B031612  |
| Physical Properties    |                                    |           |            |            |            |           | •      |          |
| Turbidity              |                                    | NTU       | see remark | see remark | see remark | 0.38      | 0.10   | B030966  |
| Elements               |                                    |           |            |            |            |           |        |          |
| Total Mercury (Hg)     |                                    | ug/L      | 1          | -          | -          | <0.0019   | 0.0019 | B032486  |
| Total Metals by ICP    | MS                                 |           |            |            |            |           |        |          |
| Total Aluminum (AI)    | 1                                  | ug/L      | 2900       | ı          | 100        | 23.3      | 3.0    | B034118  |
| Total Antimony (Sb)    |                                    | ug/L      | 6          | =          | =          | <0.50     | 0.50   | B034118  |
| Total Arsenic (As)     |                                    | ug/L      | 10         | =          | =          | 1.44      | 0.10   | B034118  |
| Total Barium (Ba)      |                                    | ug/L      | 2000       | -          | -          | 2.0       | 1.0    | B034118  |
| Total Boron (B)        |                                    | ug/L      | 5000       | =          | =          | 228       | 50     | B034118  |
| Total Cadmium (Cd)     |                                    | ug/L      | 7          | =          | - <0.010   |           | 0.010  | B034118  |
| Total Chromium (Cr)    |                                    | ug/L      | 50         | =          | =          | <1.0      | 1.0    | B034118  |
| No Fill No Exceedance  |                                    |           |            |            |            |           |        |          |
| Grey                   | Exceeds 1 criteria policy/level    |           |            |            |            |           |        |          |
| Black                  | Black Exceeds both criteria/levels |           |            |            |            |           |        |          |
|                        | RDL = Reportable Detection Limit   |           |            |            |            |           |        |          |
| N/A = Not Applicabl    |                                    |           |            |            |            |           |        |          |
| I/A = NOT Applicable   |                                    |           |            |            |            |           |        |          |

Page 3 of 8



# **DRINKING WATER PACKAGE (NON-REGULATED)**

|           |                                         |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BUI440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                 |
|-----------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                         |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                 |
|           |                                         |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WI034252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                 |
| UNITS     | MAC                                     | AO                                                                                                                                                                                                                                                                                                                                                                                          | OG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WID 69176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RDL                                                                                                                                                                                                                                                                                                       | QC Batch                                                                                                                                                                                                                                                                                                                                        |
| ug/L      | -                                       | -                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.20                                                                                                                                                                                                                                                                                                      | B034118                                                                                                                                                                                                                                                                                                                                         |
| ug/L      | 2000                                    | 1000                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.20                                                                                                                                                                                                                                                                                                      | B034118                                                                                                                                                                                                                                                                                                                                         |
| ug/L      | -                                       | 300                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.0                                                                                                                                                                                                                                                                                                       | B034118                                                                                                                                                                                                                                                                                                                                         |
| ug/L      | 5                                       | -                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.20                                                                                                                                                                                                                                                                                                      | B034118                                                                                                                                                                                                                                                                                                                                         |
| ug/L      | 120                                     | 20                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                       | B034118                                                                                                                                                                                                                                                                                                                                         |
| ug/L      | -                                       | -                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0                                                                                                                                                                                                                                                                                                       | B034118                                                                                                                                                                                                                                                                                                                                         |
| ug/L      | -                                       | -                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                       | B034118                                                                                                                                                                                                                                                                                                                                         |
| ug/L      | 50                                      | -                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.10                                                                                                                                                                                                                                                                                                      | B034118                                                                                                                                                                                                                                                                                                                                         |
| ug/L      | -                                       | -                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                                                                                                                       | B034118                                                                                                                                                                                                                                                                                                                                         |
| ug/L      | -                                       | -                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.020                                                                                                                                                                                                                                                                                                     | B034118                                                                                                                                                                                                                                                                                                                                         |
| ug/L      | 7000                                    | -                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                       | B034118                                                                                                                                                                                                                                                                                                                                         |
| ug/L      | 20                                      | -                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.10                                                                                                                                                                                                                                                                                                      | B034118                                                                                                                                                                                                                                                                                                                                         |
| ug/L      | -                                       | -                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.0                                                                                                                                                                                                                                                                                                       | B034118                                                                                                                                                                                                                                                                                                                                         |
| ug/L      | -                                       | 5000                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.0                                                                                                                                                                                                                                                                                                       | B034118                                                                                                                                                                                                                                                                                                                                         |
| mg/L      | -                                       | -                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.050                                                                                                                                                                                                                                                                                                     | B029300                                                                                                                                                                                                                                                                                                                                         |
| mg/L      | -                                       | -                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.050                                                                                                                                                                                                                                                                                                     | B029300                                                                                                                                                                                                                                                                                                                                         |
| mg/L      | -                                       | -                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.050                                                                                                                                                                                                                                                                                                     | B029300                                                                                                                                                                                                                                                                                                                                         |
| mg/L      | -                                       | 200                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.050                                                                                                                                                                                                                                                                                                     | B029300                                                                                                                                                                                                                                                                                                                                         |
| mg/L      | -                                       | -                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.0                                                                                                                                                                                                                                                                                                       | B029300                                                                                                                                                                                                                                                                                                                                         |
| - '       |                                         | •                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                               |
| CFU/100mL | 0                                       | -                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                       | B031605                                                                                                                                                                                                                                                                                                                                         |
| CFU/100mL | 0                                       | -                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                       | B031605                                                                                                                                                                                                                                                                                                                                         |
|           | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L | ug/L     -       ug/L     2000       ug/L     -       ug/L     5       ug/L     120       ug/L     -       ug/L     50       ug/L     -       ug/L     -       ug/L     -       ug/L     20       ug/L     -       ug/L     -       ug/L     -       mg/L     -       CFU/100mL     0 | ug/L         -         -           ug/L         2000         1000           ug/L         -         300           ug/L         5         -           ug/L         120         20           ug/L         -         -           ug/L         -         -           ug/L         50         -           ug/L         -         -           ug/L         -         -           ug/L         20         -           ug/L         -         -           ug/L         - | ug/L       -       -       -         ug/L       2000       1000       -         ug/L       -       300       -         ug/L       5       -       -         ug/L       120       20       -         ug/L       -       -       -         ug/L       -       -       -         ug/L       50       -       -         ug/L       -       -       -         ug/L       -       -       -         ug/L       7000       -       -         ug/L       20       -       -         ug/L       -       -       -         ug/L <td< td=""><td>UNITS         MAC         AO         OG         WI034252           ug/L         -         -         -         0.27           ug/L         2000         1000         -         5.40           ug/L         -         300         -         30.2           ug/L         5         -         -         &lt;0.20</td>           ug/L         120         20         -         53.7           ug/L         120         20         -         53.7           ug/L         -         -         -         &lt;0.20</td<> | UNITS         MAC         AO         OG         WI034252           ug/L         -         -         -         0.27           ug/L         2000         1000         -         5.40           ug/L         -         300         -         30.2           ug/L         5         -         -         <0.20 | UNITS         MAC         AO         OG         WI034252           ug/L         -         -         -         0.27         0.20           ug/L         2000         1000         -         5.40         0.20           ug/L         -         300         -         30.2         5.0           ug/L         5         -         -         <0.20 |

No Fill
Grey
Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

N/A = Not Applicable



### **GENERAL COMMENTS**

Sample BUI440 [WID 69176]: Sampling Date not provided for Total Coliform & E.Coli by MF-Chromocult; therefore, hold time status cannot be assessed.

MAC,AO,OG: The guidelines that have been included in this report have been taken from the Canadian Drinking Water Quality Summary Table, September 2022.

Criteria A = Maximum Acceptable Concentration (MAC) / Criteria B = Aesthetic Objectives (AO) / Criteria C = Operational Guidance Values (OG) It is recommended to consult these guidelines when interpreting your data since there are non-numerical guidelines that are not included on this report.

### **Turbidity Guidelines:**

- 1. Chemically assisted filtration: less than or equal to 0.3 NTU in 95% of the measurements or 95% of the time each month. Shall not exceed 1.0 NTU at any time.
- 2. Slow sand / diatomaceous earth filtration: less than or equal to 1.0 NTU in 95% of the measurements or 95% of the time each month. Shall not exceed 3.0 NTU at any time.
- 3. Membrane filtration: less than or equal to 0.1 NTU in 99% of the measurements made or at least 99% of the time each calendar month. Shall not exceed 0.3 NTU at any time.
- 4. To ensure effectiveness of disinfection and for good operation of the distribution system, it is recommended that water entering the distribution system have turbidity levels of 1.0 NTU or less.

Measurement of Uncertainty has not been accounted for when stating conformity to the selected criteria, where applicable.

Results relate only to the items tested.



# **QUALITY ASSURANCE REPORT**

HY-GEO CONSULTING

Client Project #: 490 GARDNER

|          |                             |            | Matrix Spike |           | Spiked     | Blank     | Method Blank |           | RPD       |           |
|----------|-----------------------------|------------|--------------|-----------|------------|-----------|--------------|-----------|-----------|-----------|
| QC Batch | Parameter                   | Date       | % Recovery   | QC Limits | % Recovery | QC Limits | Value        | UNITS     | Value (%) | QC Limits |
| B030877  | True Colour                 | 2023/07/12 |              |           | 101        | 80 - 120  | <5.0         | Col. Unit | NC        | 20        |
| B030966  | Turbidity                   | 2023/07/12 |              |           | 97         | 80 - 120  | <0.10        | NTU       | 18        | 20        |
| B031567  | рН                          | 2023/07/13 |              |           | 100        | 97 - 103  |              |           | 1.4       | N/A       |
| B031568  | Alkalinity (PP as CaCO3)    | 2023/07/13 |              |           |            |           | <1.0         | mg/L      |           |           |
| B031568  | Alkalinity (Total as CaCO3) | 2023/07/13 |              |           | 100        | 80 - 120  | <1.0         | mg/L      |           |           |
| B031568  | Bicarbonate (HCO3)          | 2023/07/13 |              |           |            |           | <1.0         | mg/L      |           |           |
| B031568  | Carbonate (CO3)             | 2023/07/13 |              |           |            |           | <1.0         | mg/L      |           |           |
| B031568  | Hydroxide (OH)              | 2023/07/13 |              |           |            |           | <1.0         | mg/L      |           |           |
| B031571  | Conductivity                | 2023/07/13 |              |           | 100        | 90 - 110  | <2.0         | uS/cm     |           |           |
| B031612  | Nitrate plus Nitrite (N)    | 2023/07/12 | 104          | 80 - 120  | 108        | 80 - 120  | <0.020       | mg/L      | NC        | 25        |
| B031618  | Nitrite (N)                 | 2023/07/12 | 99           | 80 - 120  | 104        | 80 - 120  | <0.0050      | mg/L      | NC        | 20        |
| B032486  | Total Mercury (Hg)          | 2023/07/13 | 85           | 80 - 120  | 95         | 80 - 120  | <0.0019      | ug/L      | NC        | 20        |
| B032704  | Chloride (CI)               | 2023/07/13 | NC           | 80 - 120  | 98         | 80 - 120  | <1.0         | mg/L      |           |           |
| B032704  | Sulphate (SO4)              | 2023/07/13 | NC           | 80 - 120  | 99         | 80 - 120  | <1.0         | mg/L      | 1.6       | 20        |
| B034118  | Total Aluminum (Al)         | 2023/07/14 | 99           | 80 - 120  | 99         | 80 - 120  | <3.0         | ug/L      | 0.47      | 20        |
| B034118  | Total Antimony (Sb)         | 2023/07/14 | 102          | 80 - 120  | 102        | 80 - 120  | <0.50        | ug/L      | NC        | 20        |
| B034118  | Total Arsenic (As)          | 2023/07/14 | 102          | 80 - 120  | 101        | 80 - 120  | <0.10        | ug/L      | 6.6       | 20        |
| B034118  | Total Barium (Ba)           | 2023/07/14 | 100          | 80 - 120  | 99         | 80 - 120  | <1.0         | ug/L      | 0.49      | 20        |
| B034118  | Total Boron (B)             | 2023/07/14 | 98           | 80 - 120  | 95         | 80 - 120  | <50          | ug/L      | NC        | 20        |
| B034118  | Total Cadmium (Cd)          | 2023/07/14 | 97           | 80 - 120  | 98         | 80 - 120  | <0.010       | ug/L      | NC        | 20        |
| B034118  | Total Chromium (Cr)         | 2023/07/14 | 98           | 80 - 120  | 99         | 80 - 120  | <1.0         | ug/L      | NC        | 20        |
| B034118  | Total Cobalt (Co)           | 2023/07/14 | 94           | 80 - 120  | 95         | 80 - 120  | <0.20        | ug/L      | NC        | 20        |
| B034118  | Total Copper (Cu)           | 2023/07/14 | NC           | 80 - 120  | 94         | 80 - 120  | <0.20        | ug/L      | 0.17      | 20        |
| B034118  | Total Iron (Fe)             | 2023/07/14 | 100          | 80 - 120  | 97         | 80 - 120  | <5.0         | ug/L      | 2.2       | 20        |
| B034118  | Total Lead (Pb)             | 2023/07/14 | 99           | 80 - 120  | 100        | 80 - 120  | <0.20        | ug/L      | 0.88      | 20        |
| B034118  | Total Manganese (Mn)        | 2023/07/14 | 97           | 80 - 120  | 96         | 80 - 120  | <1.0         | ug/L      | NC        | 20        |
| B034118  | Total Molybdenum (Mo)       | 2023/07/14 | 104          | 80 - 120  | 102        | 80 - 120  | <1.0         | ug/L      | NC        | 20        |
| B034118  | Total Nickel (Ni)           | 2023/07/14 | 96           | 80 - 120  | 98         | 80 - 120  | <1.0         | ug/L      | 0.65      | 20        |
| B034118  | Total Selenium (Se)         | 2023/07/14 | 105          | 80 - 120  | 105        | 80 - 120  | <0.10        | ug/L      | NC        | 20        |
| B034118  | Total Silicon (Si)          | 2023/07/14 | NC           | 80 - 120  | 102        | 80 - 120  | <100         | ug/L      | 1.9       | 20        |
| B034118  | Total Silver (Ag)           | 2023/07/14 | 100          | 80 - 120  | 99         | 80 - 120  | <0.020       | ug/L      | NC        | 20        |
| B034118  | Total Strontium (Sr)        | 2023/07/14 | NC           | 80 - 120  | 98         | 80 - 120  | <1.0         | ug/L      | 1.6       | 20        |
| B034118  | Total Uranium (U)           | 2023/07/14 | 92           | 80 - 120  | 84         | 80 - 120  | <0.10        | ug/L      | NC        | 20        |



Bureau Veritas Job #: C351946 Report Date: 2023/07/18

## QUALITY ASSURANCE REPORT(CONT'D)

HY-GEO CONSULTING

Client Project #: 490 GARDNER

|          |                        |            | Matrix Spike |           | Spiked Blank |           | Method Blank |       | RPD       |           |
|----------|------------------------|------------|--------------|-----------|--------------|-----------|--------------|-------|-----------|-----------|
| QC Batch | Parameter              | Date       | % Recovery   | QC Limits | % Recovery   | QC Limits | Value        | UNITS | Value (%) | QC Limits |
| B034118  | Total Vanadium (V)     | 2023/07/14 | 100          | 80 - 120  | 97           | 80 - 120  | <5.0         | ug/L  | NC        | 20        |
| B034118  | Total Zinc (Zn)        | 2023/07/14 | NC           | 80 - 120  | 100          | 80 - 120  | <5.0         | ug/L  | 1.4       | 20        |
| B034173  | Total Dissolved Solids | 2023/07/17 | 100          | 80 - 120  | 97           | 80 - 120  | <10          | mg/L  | 0.83      | 20        |
| B036370  | Dissolved Fluoride (F) | 2023/07/17 | 104          | 80 - 120  | 102          | 80 - 120  | <0.050       | mg/L  | NC        | 20        |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



### **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by:  $\frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \right) \left( \frac{$ 

| New Oasla                                                                      |  |
|--------------------------------------------------------------------------------|--|
| Mauro Oselin, Scientific Specialist                                            |  |
|                                                                                |  |
| Bureau Veritas Proprietary Software<br>Logiciel Propriétaire de Bureau Veritas |  |
| Automated Statchk                                                              |  |

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.



Your Project #: 490 GARDNER Your C.O.C. #: WI034479

**Attention: AL KOHUT HY-GEO CONSULTING** 4470 Arsens Place VICTORIA, BC Canada V8Z 2M9

Report Date: 2023/07/19

Report #: R3367441 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

**BUREAU VERITAS JOB #: C352397** Received: 2023/07/12, 14:46

Sample Matrix: Drinking Water

# Samples Received: 1

| ·                                        |          | Date       | Date       |                          |                          |
|------------------------------------------|----------|------------|------------|--------------------------|--------------------------|
| Analyses                                 | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | <b>Analytical Method</b> |
| Alkalinity @25C (pp, total), CO3,HCO3,OH | 1        | N/A        | 2023/07/14 | BBY6SOP-00026            | SM 24 2320 B m           |
| Chloride/Sulphate by Auto Colourimetry   | 1        | N/A        | 2023/07/14 | BBY6SOP-00011 /          | SM24-4500-CI/SO4-E m     |
|                                          |          |            |            | BBY6SOP-00017            |                          |
| Colour (True) by Kone Lab                | 1        | N/A        | 2023/07/14 | BBY6SOP-00057            | SM 23 2120 C m           |
| Conductivity @25C                        | 1        | N/A        | 2023/07/14 | BBY6SOP-00026            | SM 24 2510 B m           |
| Fluoride                                 | 1        | N/A        | 2023/07/17 | BBY6SOP-00048            | SM 24 4500-F C m         |
| Hardness Total (calculated as CaCO3) (1) | 1        | N/A        | 2023/07/15 | BBY WI-00033             | Auto Calc                |
| Mercury (Total) by CV                    | 1        | 2023/07/14 | 2023/07/14 | AB SOP-00084             | BCMOE BCLM Oct2013 m     |
| Na, K, Ca, Mg, S by CRC ICPMS (total)    | 1        | N/A        | 2023/07/15 | BBY WI-00033             | Auto Calc                |
| Elements by CRC ICPMS (total)            | 1        | N/A        | 2023/07/14 | BBY7SOP-00003 /          | EPA 6020b R2 m           |
|                                          |          |            |            | BBY7SOP-00002            |                          |
| Nitrate + Nitrite (N)                    | 1        | N/A        | 2023/07/14 | BBY6SOP-00010            | SM 23 4500-NO3- I m      |
| Nitrite (N) by CFA                       | 1        | N/A        | 2023/07/14 | BBY6SOP-00010            | SM 23 4500-NO3- I m      |
| Nitrogen - Nitrate (as N)                | 1        | N/A        | 2023/07/15 | BBY WI-00033             | Auto Calc                |
| pH @25°C (2)                             | 1        | N/A        | 2023/07/14 | BBY6SOP-00026            | SM 24 4500-H+ B m        |
| Total Dissolved Solids (Filt. Residue)   | 1        | 2023/07/14 | 2023/07/17 | BBY6SOP-00033            | SM 24 2540 C m           |
| Total Coliform & E.Coli by MF-Chromocult | 1        | N/A        | 2023/07/13 | BBY4SOP-00143            | Merck KGaA Version 1     |
| Turbidity                                | 1        | N/A        | 2023/07/13 | BBY6SOP-00027            | SM 23 2130 B m           |

### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.



Your Project #: 490 GARDNER Your C.O.C. #: WI034479

Attention: AL KOHUT
HY-GEO CONSULTING
4470 Arsens Place
VICTORIA, BC
Canada V8Z 2M9

Report Date: 2023/07/19

Report #: R3367441 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C352397 Received: 2023/07/12, 14:46

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- \* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) "Total Hardness" was calculated from Total Ca and Mg concentrations and may be biased high (Hardness, or Dissolved Hardness, calculated from Dissolved Ca and Mg, should be used for compliance if available).
- (2) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas endeavours to analyze samples as soon as possible after receipt.

### **Encryption Key**

Please direct all questions regarding this Certificate of Analysis to: Customer Solutions, Western Canada Customer Experience Team Email: customersolutionswest@bureauveritas.com Phone# (604) 734 7276

\_..

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Raphael Kwan, Senior Manager, BC and Yukon Regions responsible for British Columbia Environmental laboratory operations.

# **DRINKING WATER PACKAGE (NON-REGULATED)**

| Bureau Veritas ID          |                    |            |            |            | BUL010              |        |          |  |
|----------------------------|--------------------|------------|------------|------------|---------------------|--------|----------|--|
| Sampling Date              |                    |            |            |            | 2023/07/12<br>09:50 |        |          |  |
| COC Number                 |                    |            |            |            | WI034479            |        |          |  |
|                            | UNITS              | MAC        | AO         | OG         | WID 69177           | RDL    | QC Batch |  |
| ANIONS                     |                    | 1          | l .        | l .        |                     | II.    |          |  |
| Nitrite (N)                | mg/L               | 1          | -          | -          | 0.0069              | 0.0050 | B034898  |  |
| Calculated Parameters      |                    | · L        | I .        | I .        |                     |        |          |  |
| Total Hardness (CaCO3)     | mg/L               | -          | -          | -          | 125                 | 0.50   | B030744  |  |
| Nitrate (N)                | mg/L               | 10         | -          | -          | 0.560               | 0.020  | B030823  |  |
| Misc. Inorganics           | <u> </u>           | I          | I .        | I .        |                     |        |          |  |
| Conductivity               | uS/cm              | -          | -          | -          | 410                 | 2.0    | B033528  |  |
| рН                         | рН                 | -          | -          | 7.0:10.5   | 7.86                | N/A    | B033527  |  |
| Total Dissolved Solids     | mg/L               | -          | 500        | -          | 240                 | 10     | B034173  |  |
| Anions                     |                    | 1          | I          | I          |                     |        |          |  |
| Alkalinity (PP as CaCO3)   | mg/L               | -          | -          | -          | <1.0                | 1.0    | B033526  |  |
| Alkalinity (Total as CaCO3 |                    | -          | -          | -          | 180                 | 1.0    | B033526  |  |
| Bicarbonate (HCO3)         | mg/L               | -          | -          | -          | 220                 | 1.0    | B033526  |  |
| Carbonate (CO3)            | mg/L               | -          | -          | -          | <1.0                | 1.0    | B033526  |  |
| Dissolved Fluoride (F)     | mg/L               | 1.5        | -          | -          | 0.11                | 0.050  | B036749  |  |
| Hydroxide (OH)             | mg/L               | -          | -          | -          | <1.0                | 1.0    | B033526  |  |
| Chloride (CI)              | mg/L               | -          | 250        | -          | 8.5                 | 1.0    | B034435  |  |
| Sulphate (SO4)             | mg/L               | -          | 500        | -          | 6.0                 | 1.0    | B034435  |  |
| MISCELLANEOUS              | +                  |            | ļ          | ļ          |                     | !      |          |  |
| True Colour                | Col. Unit          | -          | 15         | -          | <5.0                | 5.0    | B034238  |  |
| Nutrients                  | <u> </u>           | · I        | l.         | I.         |                     |        | L.       |  |
| Nitrate plus Nitrite (N)   | mg/L               | -          | -          | -          | 0.567               | 0.020  | B034897  |  |
| Physical Properties        | <u> </u>           | I          | I .        | I .        |                     |        |          |  |
| Turbidity                  | NTU                | see remark | see remark | see remark | 0.38                | 0.10   | B033464  |  |
| Elements                   | <del>.</del>       |            | ļ          | ļ          |                     | !      |          |  |
| Total Mercury (Hg)         | ug/L               | 1          | -          | -          | <0.0019             | 0.0019 | B034230  |  |
| Total Metals by ICPMS      |                    | I.         | I .        | I .        |                     |        |          |  |
| Total Aluminum (Al)        | ug/L               | 2900       | -          | 100        | 15.7                | 3.0    | B034118  |  |
| Total Antimony (Sb)        | ug/L               | 6          | -          | -          | <0.50               | 0.50   | B034118  |  |
| Total Arsenic (As)         | ug/L               | 10         | -          | -          | 0.66                | 0.10   | B034118  |  |
| Total Barium (Ba)          | ug/L               | 2000       | -          | -          | 6.2                 | 1.0    | B034118  |  |
| Total Boron (B)            | ug/L               | 5000       | -          | -          | 63                  | 50     | B034118  |  |
| Total Cadmium (Cd)         | ug/L               | 7          | -          | -          | <0.010              | 0.010  | B034118  |  |
| No Fill No Exceedance      |                    | 1          |            |            |                     | 1      |          |  |
|                            | eds 1 criteria pol | icv/level  |            |            |                     |        |          |  |
| *                          |                    |            |            |            |                     |        |          |  |
|                            |                    |            |            |            |                     |        |          |  |
| RDL = Reportable Detection | OH LIITHL          |            |            |            |                     |        |          |  |
| N/A = Not Applicable       |                    |            |            |            |                     |        |          |  |



# **DRINKING WATER PACKAGE (NON-REGULATED)**

| Bureau Veritas ID   |         |                                 |      |      |    | BUL010     |       |          |  |  |
|---------------------|---------|---------------------------------|------|------|----|------------|-------|----------|--|--|
|                     |         |                                 |      |      |    | 2023/07/12 |       |          |  |  |
| Sampling Date       |         |                                 |      |      |    | 09:50      |       |          |  |  |
| COC Number          |         |                                 |      |      |    | WI034479   |       |          |  |  |
|                     |         | UNITS                           | MAC  | AO   | OG | WID 69177  | RDL   | QC Batch |  |  |
| Total Chromium (C   | ir)     | ug/L                            | 50   | -    | -  | <1.0       | 1.0   | B034118  |  |  |
| Total Cobalt (Co)   |         | ug/L                            | -    | -    | -  | <0.20      | 0.20  | B034118  |  |  |
| Total Copper (Cu)   |         | ug/L                            | 2000 | 1000 | -  | 6.02       | 0.20  | B034118  |  |  |
| Total Iron (Fe)     |         | ug/L                            | -    | 300  | -  | 34.1       | 5.0   | B034118  |  |  |
| Total Lead (Pb)     |         | ug/L                            | 5    | -    | -  | 0.23       | 0.20  | B034118  |  |  |
| Total Manganese (   | Mn)     | ug/L                            | 120  | 20   | -  | 185        | 1.0   | B034118  |  |  |
| Total Molybdenum    | ı (Mo)  | ug/L                            | -    | -    | -  | 1.0        | 1.0   | B034118  |  |  |
| Total Nickel (Ni)   |         | ug/L                            | -    | -    | -  | <1.0       | 1.0   | B034118  |  |  |
| Total Selenium (Se  | )       | ug/L                            | 50   | -    | -  | <0.10      | 0.10  | B034118  |  |  |
| Total Silicon (Si)  |         | ug/L                            | -    | -    | -  | 10400      | 100   | B034118  |  |  |
| Total Silver (Ag)   |         | ug/L                            | -    | -    | -  | <0.020     | 0.020 | B034118  |  |  |
| Total Strontium (Sr | ·)      | ug/L                            | 7000 | -    | -  | 304        | 1.0   | B034118  |  |  |
| Total Uranium (U)   |         | ug/L                            | 20   | -    | -  | 0.32       | 0.10  | B034118  |  |  |
| Total Vanadium (V   | )       | ug/L                            | =    | -    | -  | <5.0       | 5.0   | B034118  |  |  |
| Total Zinc (Zn)     |         | ug/L                            | -    | 5000 | -  | 8.7        | 5.0   | B034118  |  |  |
| Total Calcium (Ca)  |         | mg/L                            | -    | -    | -  | 41.6       | 0.050 | B030822  |  |  |
| Total Magnesium (   | Mg)     | mg/L                            | -    | -    | -  | 5.11       | 0.050 | B030822  |  |  |
| Total Potassium (K  | )       | mg/L                            | -    | -    | -  | 0.303      | 0.050 | B030822  |  |  |
| Total Sodium (Na)   |         | mg/L                            | -    | 200  | -  | 39.7       | 0.050 | B030822  |  |  |
| Total Sulphur (S)   |         | mg/L                            | -    | -    | -  | <3.0       | 3.0   | B030822  |  |  |
| Microbiological Pa  | ram.    |                                 |      |      |    |            |       | •        |  |  |
| Total Coliforms     |         | CFU/100mL                       | 0    | -    | -  | 2.0        | N/A   | B033178  |  |  |
| E. coli             |         | CFU/100mL                       | 0    | -    | -  | 0          | N/A   | B033178  |  |  |
| No Fill             | No Exce | edance                          |      |      |    |            |       |          |  |  |
| Grey                | Exceeds | Exceeds 1 criteria policy/level |      |      |    |            |       |          |  |  |
| Black               |         | both criteria/l                 |      |      |    |            |       |          |  |  |
|                     |         | •                               |      |      |    |            |       |          |  |  |

RDL = Reportable Detection Limit

N/A = Not Applicable



### **GENERAL COMMENTS**

MAC,AO,OG: The guidelines that have been included in this report have been taken from the Canadian Drinking Water Quality Summary Table, September 2022.

Criteria A = Maximum Acceptable Concentration (MAC) / Criteria B = Aesthetic Objectives (AO) / Criteria C = Operational Guidance Values (OG) It is recommended to consult these guidelines when interpreting your data since there are non-numerical guidelines that are not included on this report.

### **Turbidity Guidelines:**

- 1. Chemically assisted filtration: less than or equal to 0.3 NTU in 95% of the measurements or 95% of the time each month. Shall not exceed 1.0 NTU at any time.
- 2. Slow sand / diatomaceous earth filtration: less than or equal to 1.0 NTU in 95% of the measurements or 95% of the time each month. Shall not exceed 3.0 NTU at any time.
- 3. Membrane filtration: less than or equal to 0.1 NTU in 99% of the measurements made or at least 99% of the time each calendar month. Shall not exceed 0.3 NTU at any time.
- 4. To ensure effectiveness of disinfection and for good operation of the distribution system, it is recommended that water entering the distribution system have turbidity levels of 1.0 NTU or less.

Measurement of Uncertainty has not been accounted for when stating conformity to the selected criteria, where applicable.

Results relate only to the items tested.



## **QUALITY ASSURANCE REPORT**

HY-GEO CONSULTING Client Project #: 490 GARDNER

|          |                             |            | Matrix Spike |           | Spiked Blank |           | Method Blank |           | RPD       |           |
|----------|-----------------------------|------------|--------------|-----------|--------------|-----------|--------------|-----------|-----------|-----------|
| QC Batch | Parameter                   | Date       | % Recovery   | QC Limits | % Recovery   | QC Limits | Value        | UNITS     | Value (%) | QC Limits |
| B033464  | Turbidity                   | 2023/07/13 |              |           | 101          | 80 - 120  | <0.10        | NTU       | 0.71      | 20        |
| B033526  | Alkalinity (PP as CaCO3)    | 2023/07/14 |              |           |              |           | <1.0         | mg/L      |           |           |
| B033526  | Alkalinity (Total as CaCO3) | 2023/07/14 |              |           | 97           | 80 - 120  | <1.0         | mg/L      |           |           |
| B033526  | Bicarbonate (HCO3)          | 2023/07/14 |              |           |              |           | <1.0         | mg/L      |           |           |
| B033526  | Carbonate (CO3)             | 2023/07/14 |              |           |              |           | <1.0         | mg/L      |           |           |
| B033526  | Hydroxide (OH)              | 2023/07/14 |              |           |              |           | <1.0         | mg/L      |           |           |
| B033527  | рН                          | 2023/07/14 |              |           | 100          | 97 - 103  |              |           |           |           |
| B033528  | Conductivity                | 2023/07/14 |              |           | 99           | 90 - 110  | <2.0         | uS/cm     |           |           |
| B034118  | Total Aluminum (Al)         | 2023/07/14 | 99           | 80 - 120  | 99           | 80 - 120  | <3.0         | ug/L      | 0.47      | 20        |
| B034118  | Total Antimony (Sb)         | 2023/07/14 | 102          | 80 - 120  | 102          | 80 - 120  | <0.50        | ug/L      | NC        | 20        |
| B034118  | Total Arsenic (As)          | 2023/07/14 | 102          | 80 - 120  | 101          | 80 - 120  | <0.10        | ug/L      | 6.6       | 20        |
| B034118  | Total Barium (Ba)           | 2023/07/14 | 100          | 80 - 120  | 99           | 80 - 120  | <1.0         | ug/L      | 0.49      | 20        |
| B034118  | Total Boron (B)             | 2023/07/14 | 98           | 80 - 120  | 95           | 80 - 120  | <50          | ug/L      | NC        | 20        |
| B034118  | Total Cadmium (Cd)          | 2023/07/14 | 97           | 80 - 120  | 98           | 80 - 120  | <0.010       | ug/L      | NC        | 20        |
| B034118  | Total Chromium (Cr)         | 2023/07/14 | 98           | 80 - 120  | 99           | 80 - 120  | <1.0         | ug/L      | NC        | 20        |
| B034118  | Total Cobalt (Co)           | 2023/07/14 | 94           | 80 - 120  | 95           | 80 - 120  | <0.20        | ug/L      | NC        | 20        |
| B034118  | Total Copper (Cu)           | 2023/07/14 | NC           | 80 - 120  | 94           | 80 - 120  | <0.20        | ug/L      | 0.17      | 20        |
| B034118  | Total Iron (Fe)             | 2023/07/14 | 100          | 80 - 120  | 97           | 80 - 120  | <5.0         | ug/L      | 2.2       | 20        |
| B034118  | Total Lead (Pb)             | 2023/07/14 | 99           | 80 - 120  | 100          | 80 - 120  | <0.20        | ug/L      | 0.88      | 20        |
| B034118  | Total Manganese (Mn)        | 2023/07/14 | 97           | 80 - 120  | 96           | 80 - 120  | <1.0         | ug/L      | NC        | 20        |
| B034118  | Total Molybdenum (Mo)       | 2023/07/14 | 104          | 80 - 120  | 102          | 80 - 120  | <1.0         | ug/L      | NC        | 20        |
| B034118  | Total Nickel (Ni)           | 2023/07/14 | 96           | 80 - 120  | 98           | 80 - 120  | <1.0         | ug/L      | 0.65      | 20        |
| B034118  | Total Selenium (Se)         | 2023/07/14 | 105          | 80 - 120  | 105          | 80 - 120  | <0.10        | ug/L      | NC        | 20        |
| B034118  | Total Silicon (Si)          | 2023/07/14 | NC           | 80 - 120  | 102          | 80 - 120  | <100         | ug/L      | 1.9       | 20        |
| B034118  | Total Silver (Ag)           | 2023/07/14 | 100          | 80 - 120  | 99           | 80 - 120  | <0.020       | ug/L      | NC        | 20        |
| B034118  | Total Strontium (Sr)        | 2023/07/14 | NC           | 80 - 120  | 98           | 80 - 120  | <1.0         | ug/L      | 1.6       | 20        |
| B034118  | Total Uranium (U)           | 2023/07/14 | 92           | 80 - 120  | 84           | 80 - 120  | <0.10        | ug/L      | NC        | 20        |
| B034118  | Total Vanadium (V)          | 2023/07/14 | 100          | 80 - 120  | 97           | 80 - 120  | <5.0         | ug/L      | NC        | 20        |
| B034118  | Total Zinc (Zn)             | 2023/07/14 | NC           | 80 - 120  | 100          | 80 - 120  | <5.0         | ug/L      | 1.4       | 20        |
| B034173  | Total Dissolved Solids      | 2023/07/17 | 100          | 80 - 120  | 97           | 80 - 120  | <10          | mg/L      | 0.83      | 20        |
| B034230  | Total Mercury (Hg)          | 2023/07/14 | 104          | 80 - 120  | 99           | 80 - 120  | <0.0019      | ug/L      | NC        | 20        |
| B034238  | True Colour                 | 2023/07/14 |              |           | 106          | 80 - 120  | <5.0         | Col. Unit | NC        | 20        |
| B034435  | Chloride (CI)               | 2023/07/14 | NC           | 80 - 120  | 100          | 80 - 120  | <1.0         | mg/L      | 0.074     | 20        |



Bureau Veritas Job #: C352397 Report Date: 2023/07/19

## QUALITY ASSURANCE REPORT(CONT'D)

HY-GEO CONSULTING

Client Project #: 490 GARDNER

|          |                          |            | Matrix Spike |           | Spiked Blank |           | Method Blank |       | RPD       |           |
|----------|--------------------------|------------|--------------|-----------|--------------|-----------|--------------|-------|-----------|-----------|
| QC Batch | Parameter                | Date       | % Recovery   | QC Limits | % Recovery   | QC Limits | Value        | UNITS | Value (%) | QC Limits |
| B034435  | Sulphate (SO4)           | 2023/07/14 | NC           | 80 - 120  | 101          | 80 - 120  | <1.0         | mg/L  | 0.94      | 20        |
| B034897  | Nitrate plus Nitrite (N) | 2023/07/14 | 102          | 80 - 120  | 107          | 80 - 120  | <0.020       | mg/L  | NC        | 25        |
| B034898  | Nitrite (N)              | 2023/07/14 | 99           | 80 - 120  | 106          | 80 - 120  | <0.0050      | mg/L  | NC        | 20        |
| B036749  | Dissolved Fluoride (F)   | 2023/07/17 | 110          | 80 - 120  | 106          | 80 - 120  | <0.050       | mg/L  | 0         | 20        |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



### **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by:

Mauro Oselin, Scientific Specialist

Bureau Veritas Proprietary Software
Logiciel Propriétaire de Bureau Veritas

**Automated Statchk** 

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.