From: Daniela Murphy

Sent: Thursday, December 19, 2019 3:32 PM

'Lynne.Magee@viha.ca'; 'BISaltspring'; 'Christine Condron'; To:

'kcampbell@crd.bc.ca'; 'info@nsswaterworks.ca'; 'Chris.McMillan@gov.bc.ca' Jason Youmans; Salt Spring Island Local Trust Committee; 'jarnet@crd.bc.ca' **Subject:** Water Servicing Plan Referral for Salt Spring Island Rezoning application SS-

RZ-2013.7, Lot 10 Park Drive, SSI

Attachments: Domestic Water Study for Lot 10, Park Drive, Salt Spring Island, BC-R.pdf;

2018-02-09 HydroGeo Rpt 20006356-R.pdf; Swanson's Pond Water License-

R.pdf

Dear Referral Coordinator,

Cc:

The Salt Spring Island Local Trust Committee (LTC) respectfully requests your review and comment on the attached document titled "Domestic Water Study for Lot 10, Park Drive, Salt Spring Island, B.C." from Stantec Consulting Ltd.

This report was procured by the applicant of a rezoning proposal that would increase the permitted residential density on the subject property from 33 units to 49 units.

As you will see from the report, the applicant plans to allocate residential densities on the property as follows:

- 24 studio (bachelor) apartments
- 24 one-bedroom apartments
- 1 single-family dwelling

When this matter was last considered by the LTC in 2016, it requested the applicant to provide a water servicing plan prepared by a professional engineer that addresses a number of issues identified in the Salt Spring Island Official Community Plan concerning development proposals serviced by groundwater (see resolutions at the end of this email). The attached Stantec report seeks to address some of those issues. The LTC also directed staff to refer the water servicing plan, when received, to other agencies that may have a role in the water system and building permitting process.

It is hoped that this referral will advance the understanding of whether a viable, long-term supply of potable water for the proposed residential density is feasible based on the proposed servicing plan.

Also attached for your reference is a copy of the well water license issued for the subject property by the Ministry of Forests, Lands, Natural Resource Operations and Rural Development (FLNRORD) in January 2019, as well as the groundwater supply report obtained in support of the well license application.

A reply is respectfully requested by Friday, February 14, 2020.

We understand that there are numerous demands on your time. Please know that your comments regarding this matter are greatly valued.

Should you have any questions, or require further information, please contact Planner Jason Youmans at jyoumans@islandstrust.bc.ca or 250-538-5603.

Please direct referral responses to ssiinfo@islandstrust.bc.ca
Or by mail to: Islands Trust, 1 – 500 Lower Ganges Road, Salt Spring Island, BC V8K 2N8

Thank you for your time and attention to this matter.

Yours truly, Daniela Murphy

Daniela Murphy

Legislative Clerk/Deputy Secretary Islands Trust, Salt Spring Island

#1 – 500 Lower Ganges Road Salt Spring Island, BC V8K 2N8 Phone: 250-538-5606 Enquiry BC Toll-free call 1-800-663-7867

Websites: www.islandstrust.bc.ca I www.islandstrust.conservancy.ca Preserving Island communities, culture and environment since 1974.

.....

SS-2016-136

It was MOVED and SECONDED,

that the Salt Spring Island Local Trust Committee request that the applicant provide a water servicing plan prepared by a professional engineer that contains the following related to the provision of potable and non-potable water to the subject lot:

- Confirmation that potable water in the amount required to obtain occupancy permits can be provided under the plan for all proposed units and that water in the amount required for fire suppression and irrigation can also be provided;
- Where potable water is to be supplied by groundwater, a pump test(s) conducted by a professional engineer and containing supporting documentation that the test was of sufficient duration to establish the long-term reliability of the water supply in accordance with generally acceptable hydrological engineering practices;
- Where potable water is to be supplied by groundwater, a water quality analysis that demonstrates that the groundwater from each proposed water supply source or well is potable or can be made potable with a treatment system; and
- 4. Where potable water is to be supplied by groundwater, assessment of how groundwater use on site will impact:
 - a. Nearby wells or other neighbourhood water supplies;
 - b. Agricultural activities;
 - c. Springs necessary to maintain fish habitat.

5. That the applicant makes every effort to include rainwater as part of the water supply plan.

CARRIED

SS-2016-137

It was MOVED and SECONDED,

that the Salt Spring Island Local Trust Committee direct staff, upon receipt of a water servicing plan from the applicant, to refer the plan to the Secretary to the Comptroller of Water Rights, Island Health, CRD Building Inspection and the North Salt Spring Water District for review and comment.

CARRIED

REPORT on GROUNDWATER SUPPLY for LOT 10, SECTION 2, RANGE 3 EAST, NORTH SPRING ISLAND

Prepared for:

Salt Spring Ventures Inc

Submitted by:

Hy-Geo Consulting Victoria, British Columbia

August 11, 2017

File: 1609291

EXECUTIVE SUMMARY

Hy-Geo Consulting was retained by E. Booth of Salt Spring Ventures Inc to complete an assessment of the quantity and quality of available groundwater for a proposed multi-family development along Park Drive and identify any potential risks to adjacent groundwater or surface water sources. This report summarizes the results of the investigations carried out in order to meet the water supply conditions as outlined under OCP policy C.3.3.2.2.

A man-made pond, locally known as Swanson's Pond, occupies the central portion of the property covering an area of approximately 0.23 acres or 924 square metres based on late summer 2013 orthophoto mapping. A 15.2 cm (6-inch) diameter bedrock well WID 25502 (WTN 94866) situated close to the northeast shore of the pond is being proposed as the source of water supply for the multi-family development. The other nearest water supply source is a licensed spring (Hickey Spring) situated along the west side of Desmond Crescent about 85 m north of the well. Two other bedrock wells have been recorded in the region just over 300 m northwest of the property well.

Extended duration pumping tests of Well WID 25502 up to rates of 28.8L/min (7.6 USgpm) for 27.3 days has shown a direct communication between the well and the water in Swanson's Pond. Under pumping conditions, up to 59 percent of the water pumped from the well can be attributed to inflow from the pond. Based on the pumping test results and information currently available the long-term capacity of the well in conjunction with the pond has been rated at a maximum capacity of 13.2 L/min (3.5 USgpm). Long-term monitoring of Hickey Spring during 2017 showed that the well pumping tests had no measurable affects on the spring. Use of the well at a maximum rate of 13.2 L/min (3.5 USgpm) would have no measurable effect on existing wells, springs, or other water supplies.

Due to the close communication between the pond and the groundwater regime, the well is at risk of containing pathogens and will require disinfection according to the *Guidance Document for Determining Ground Water at Risk of Containing Pathogens (GARP), Version 2* (BC Ministry of Health, 2016). In addition, a properly designed water treatment system will be required to reduce levels of colour, turbidity, iron and manganese and hydrogen sulphide. These latter parameters are of aesthetic concern and do not pose a health hazard.

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	2
INTRODUCTION	6
Property Location and Water Sources Soil Conditions Bedrock Geology Climate Topography, Drainage and Swanson's Pond	6 7 7 8 8
HYDROGEOLOGICAL SETTING	11
Well WID 25502 (WTN 94866)Hickey Spring	14 14
HYDROGEOLOGICAL TESTING	14
73-hour Pumping Test of Well (WID 25502) 8-hour Pumping Test of Swanson's Pond 11.3-day Pumping Test of Well (WID 25502) 27.3-day Pumping Test of Well (WID 25502)	15 18 20 22
WATER QUALITY RESULTS	27
Well WID 25502 Swanson's Pond	27 29
DISCUSSION and CONCLUSION	29
RECOMMENDATIONS	30
CLOSURE	30
REFERENCES	31

	LIST OF FIGURES	Page
Figure 1.	Location of subject property and water sources.	7
Figure 2.	Reported Riparian and Water Protection areas adjacent to subject property.	8
Figure 3.	Soils in and about the site area.	9
Figure 4.	Bedrock geology in and about the site area.	10
Figure 5.	Steeply dipping dark grey-black mudstone exposed at edge of pond, west of production well.	11
Figure 6.	Monthly normal precipitation for Saltspring St Mary's L climate Station.	12
Figure 7.	Inferred shallow groundwater flow directions around Swanson's Pond based on topography.	13
Figure 8.	Groundwater level trend in 2017 compared to historic maximum and minimum data for Observation Well 373.	14
Figure 9.	Drawdown data results for 73-hour pumping test on well.	16
Figure 10.	Water level on Swanson's Pond during pumping test of Well WID 25502.	16
Figure 11.	Water level on Swanson's Pond following pumping test of Well WID 25502.	17
Figure 12.	Water level in Hickey Springs Pond during 73-hour pumping test	t. 17
Figure 13.	Water level in pond during pumping of pond on February 2, 2017	7. 18
Figure 14.	Water level in Well WID 25502 during 8-hour pumping of pond of Swanson's Pond on February 2, 2017.	f 19
Figure 15.	Water level on pond March 22 to April 3, 2017.	20
Figure 16.	Water level in well March 22 to April 3, 2017.	20
Figure 17.	Drawdown data results for 11.3-day pumping test on well.	22
Figure 18.	Comparison of water levels in well, spring and pond during the 11.3-day pumping test on the well.	23

Figure 19.	Variations in conductivity at 25 °C of well water during 11.3-day pumping test.					
Figure 20.	gure 20. Drawdown data results for 27.3-day pumping test on well, June 4 to July 1, 2017.					
Figure 21.	Water level in well during 27.3 day pumping test.	26				
Figure 22.	Water level in pond during 27.3 day pumping test.	26				
Figure 23.	Water level in Hickey Spring during 27.3 day pumping test.	26				
Figure 24.	Variations in conductivity at 25 °C of well water during 27.3-day pumping test.	27				
	LIST OF TABLES					
Table 1. Su	mmary of water quality analyses.	28				
	LIST OF APPENDICES					
Appendix A	LIST OF APPENDICES Photographs taken during excavation of Swanson's Pond, late summer 2008.					
	Photographs taken during excavation of Swanson's Pond,					
Appendix B	Photographs taken during excavation of Swanson's Pond, late summer 2008.					
Appendix B Appendix C	Photographs taken during excavation of Swanson's Pond, late summer 2008. Well Construction Report					
Appendix B Appendix C Appendix D	Photographs taken during excavation of Swanson's Pond, late summer 2008. Well Construction Report Photographs of Hickey Spring, January 2017.					
Appendix B Appendix C Appendix D Appendix E	Photographs taken during excavation of Swanson's Pond, late summer 2008. Well Construction Report Photographs of Hickey Spring, January 2017. Pumping Test Data for Well (WID 25502), 73 hour test.					
Appendix B Appendix C Appendix D Appendix E Appendix F	Photographs taken during excavation of Swanson's Pond, late summer 2008. Well Construction Report Photographs of Hickey Spring, January 2017. Pumping Test Data for Well (WID 25502), 73 hour test. Pumping Test Data for Well (WID 25502), 11.3 day test.					

REPORT on GROUNDWATER SUPPLY for LOT 10, SECTION 2, RANGE 3 EAST, NORTH SPRING ISLAND

INTRODUCTION

Hy-Geo Consulting was retained by E. Booth of Salt Spring Ventures Inc to complete an assessment of the quantity and quality of available groundwater for a proposed multi-family development on the above property along Park Drive and identify any potential risks to adjacent groundwater or surface water sources. The property is situated close to Ganges harbour (Figure 1), encompasses Crown Parcel ID PIN 34987471 and occupies approximately 1.326 hectares (3.28 acres) in area. The land description is reported as Lot 10, Section 2, Range 3 East, North Salt Spring Island, Cowichan District, Plan 14710 (PID: 004-255-500).

This report summarizes the results of the investigations carried out in order to meet the water supply conditions as outlined under OCP policy C.3.3.2.2, (Islands Trust Staff Report, 2016). This policy states that, "When considering rezoning applications, the Local Trust Committee should consider the impacts of the proposed new use on existing wells, springs, or other water supplies. If the proposed use is expected to need more water than the uses already allowed on the property, then the Committee should ask for evidence that wells or other water supplies in the neighbourhood would not be depleted. The Committee should also consider whether water use would affect agricultural activities or deplete any springs necessary to maintain fish habitat."

Property Location and Water Sources

A man-made pond, locally known as Swanson's Pond, occupies the central portion of the property covering an area of approximately 0.23 acres or 924 square metres based on late summer 2013 orthophoto mapping available from the Capital Regional District (CRD, 2017). In addition to this surface water source there is a 15.2 cm (6-inch) diameter bedrock well WID 25502 (WTN 94866) situated close to the northeast shore of the pond. The well was initially drilled in 2008 by Drillwell Enterprises Ltd., to a depth of 30.48 m (100 feet) and estimated by the driller to yield 45.4 L/min (12 US gallons per minute). This well is being proposed as the source of water supply for the multi-family development. The other nearest water supply source is a spring (Hickey Spring) situated along the west side of Desmond Crescent about 85 m north of the well and having one domestic water licence. Two other bedrock wells have been recorded in the region just over 300 m northwest of the property well (Ministry of Environment, 2017a).

Based on the Islands Trust Staff Report (2016) on the subject property, the parcel appears to include Development Permit Areas 4 (Water Protection) and 7 (Riparian Protection). These permit areas are shown along the drainage ditch south of Hickey Spring and along the eastern boundary of the property (Figure 2). Flow in these drainage ditches occurs during the winter months while they are dry during the summer and early fall.

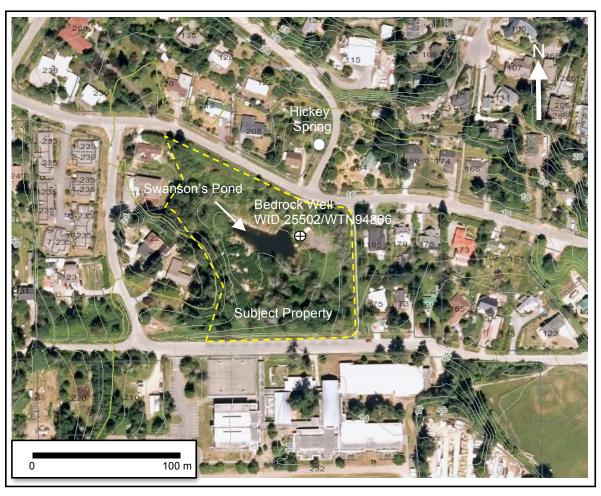


Figure 1. Location of subject property and water sources. Basemap from CRD (2017).

Soil Conditions

Soils in and about the property area (Figure 3) are reported to belong to the Mexicana-Trincomali series comprised of gravelly sandy loam to gravelly loam morainal deposits less than 100 cm deep over compact unweathered glacial till.

Bedrock Geology

The region is underlain by a series of Upper Cretaceous sedimentary rocks belonging to the Nanaimo Group (Muller and Jeletzky,1970) with the property area situated near the faulted contact zone between the Ganges (Pender) Formation and the Protection Formation as shown in Figure 4. At the well site, steeply dipping, dark grey to black mudstone is exposed beside Swanson's Pond (Figure 5). This unit is likely part of the Ganges Formation and reported as shale in the well record (WTN 94866).

Figure 2. Reported Riparian and Water Protection areas adjacent to subject property. Adapted from Islands Trust Staff Report (2016).

Climate

Lower elevations on Salt Spring Island are situated in the Coastal Douglas-fir biogeoclimatic zone with a moist maritime climate (Government of British Columbia, 2017). The climate is characterized by cool dry summers and humid mild winters. The majority of this precipitation falls during the period from November to February and the summers months are subject to drought conditions. Normal annual precipitation (Government of Canada, 2017) reported at the Saltspring St Mary's L climate station (ID: 1016995) was 987.0 mm (38.9 inches) during the period 1981 to 2010 (Figure 6). Global climate models (Allen *et al.*, 2008) suggest precipitation may increase slightly in the future, particularly during the winter months.

Topography, Drainage and Swanson's Pond

Swanson's Pond is an excavated pond that has been reported to have been originally dug in the 1950's in a swampy area (Salt Spring Island Archives, 2017). It is situated at an elevation of approximately 17 m above sea level (Figure 7). The pond was subsequently deepened by Eric Booth in late summer of 2008. Photographs taken of the excavation work at that time are shown in Appendix A. Maximum depth of the pond is reported to be about 3.05 m (10 feet), pers. comm., E. Booth, January 2017. Area and depth of the pond varies seasonally. Swanson's Pond is not directly connected to inflows from adjacent drainage ditches. A PVC, 15.2 cm (6-inch) diameter outlet pipe has been installed at the eastern end of the pond to enable

lowering of the pond if necessary, however, it is normally blocked to retain pond levels sustained by precipitation and groundwater seepage (pers. comm., E. Booth, May 2017).

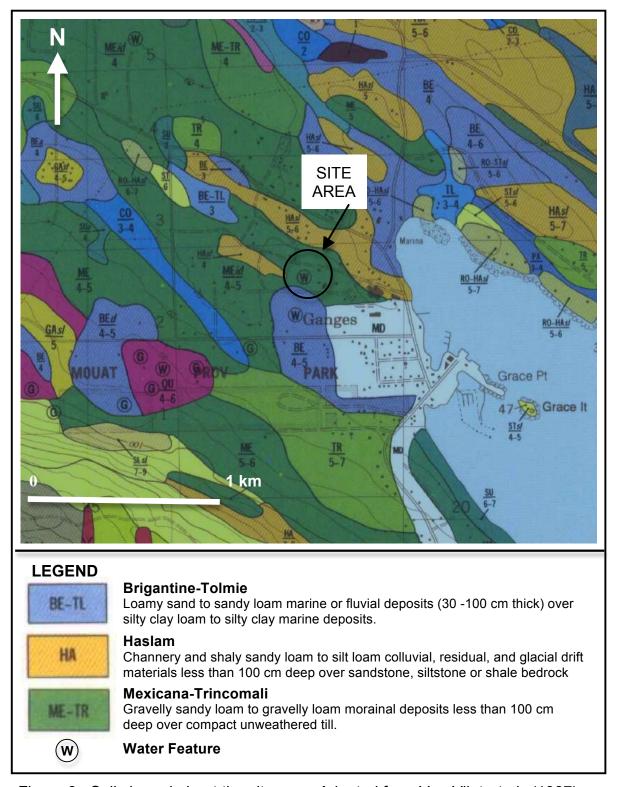


Figure 3. Soils in and about the site area. Adapted from Van Vliet et al., (1987).

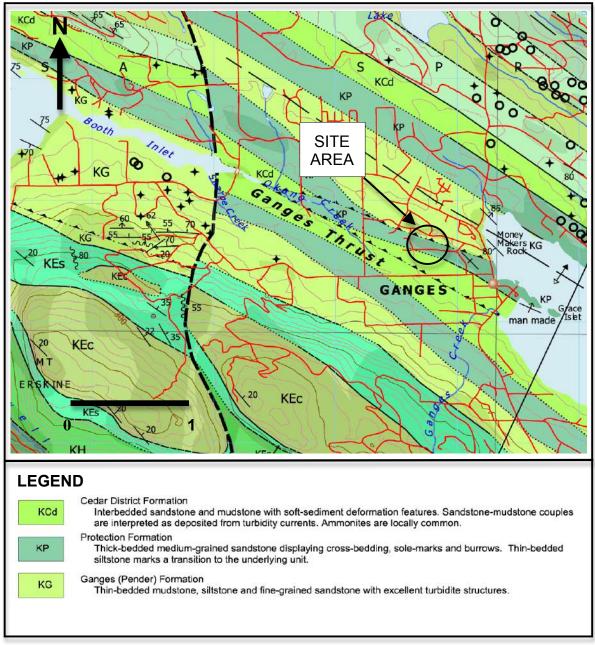


Figure 4. Bedrock geology in and about the site area. Adapted from Greenwood and Mihalynuk (2009).

Figure 5. Steeply dipping dark grey-black mudstone exposed at edge of pond, west of production well. Photograph taken May 14, 2017.

HYDROGEOLOGICAL SETTING

The hydrogeological conditions of Salt Spring Island have been described by Hodge (1977 and 1995), Larocque (2014) and Larocque *et al.*, (2015). Groundwater on the island is found primarily in open fractures in the bedrock formations as they are encountered during drilling of water wells. These fractures constitute the major zones for groundwater storage and movement. Larocque *et al.*, (2015) have mapped the regional groundwater level elevations and flow directions on the island based on water level data from existing water wells and other sources. This data indicates that the property is situated within a regional groundwater discharge area likely recharged from the surrounding topographically higher areas such as Mount Belcher.

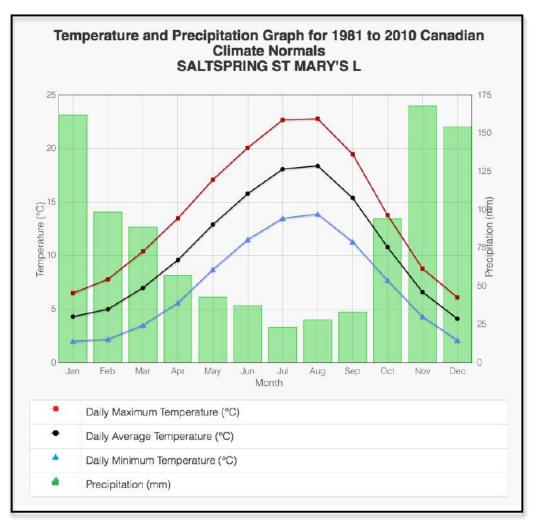


Figure 6. Monthly normal precipitation for Saltspring St Mary's L climate station. Data from Government of Canada, 2017.

Figure 7 shows the inferred directions of shallow groundwater flow around Swanson's Pond based on the local topography and field observations, i.e. discharge conditions such as Hickey Spring. Deeper groundwater flows are likely upwards in this region. Saline groundwater with elevated levels of chloride > 300 mg/L and total dissolved solids > 620 mg/L have been reported west of the property near Booth Bay (Hodge, 1977 and 1995). The Ministry of Environment (2017a) has identified and mapped two aquifers in the region, including bedrock Aquifer 721 and an unconsolidated sand and gravel Aquifer 156 along the west shore of Ganges Harbour. Aquifer 721 comprises the fractured sedimentary rock of the Nanaimo Group wherein the geometric mean of reported well yields is 0.13 L/s (2.0 USgpm). There is a lack of evidence for the sand and gravel Aquifer 156 occurring in the vicinity of the property.

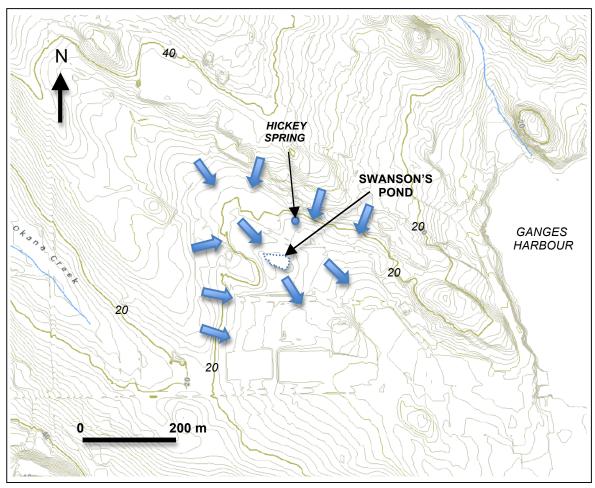


Figure 7. Inferred shallow groundwater flow directions around Swanson's Pond based on topography. Contour interval 1 m. Basemap from CRD Atlas (2017).

From historic observation well data in the Gulf Islands, groundwater levels in bedrock wells generally rise and fall with the seasons, in response to available precipitation, becoming highest during the late fall and winter months. Water levels then normally decline during the dry summer months reaching seasonal lows in the late fall months (Kohut *et al.*,1984). Figure 8 shows the groundwater level trend for Provincial Observation Well 373, situated south of Ganges for 2017 up to August of the year.

From January 2017 to July 2017 the water levels were slightly above the historic mean trend at this location, then falling below the mean in August. The well is situated in a groundwater recharge area on Mount Belcher Heights where seasonal fluctuations of several metres may occur. In the regional groundwater discharge regime of Swanson's Pond seasonal fluctuations of perhaps < 1 to 2 m may be anticipated.

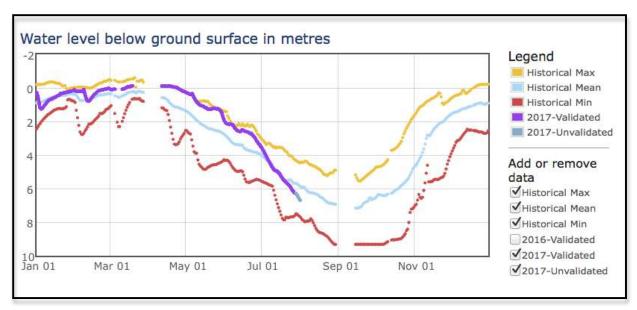


Figure 8. Groundwater level trend in 2017 compared to historic maximum and minimum data for Observation Well 373. From Ministry of Environment (2017b).

Well WID 25502 (WTN 94866)

Well WID 25502 (WTN 94866) was originally drilled September 9, 2008 before Swanson's Pond was deepened. The well was drilled to a depth of 30.48 m (100 feet) in shale bedrock and completed with 5.18 m (17 feet) of steel 15.2 cm (6-inch) diameter surface casing with a 0.304 m (1 foot) stickup above ground. Cumulative water flows of 22.7 L/min (6 gpm) and 45.4 L/min (12 gpm) were reported after drilling reached 6.1 m (20 feet) and 12.2 m (40 feet) respectively. A copy of the original well record is provided in Appendix B. The well is situated approximately 5.3 to 7.0 m (17.5 to 23.0 feet) away from the edge of Swanson's Pond, depending upon the water level in the pond.

Hickey Spring

Hickey Spring is a licensed water source (Licence No. C122815) that discharges into a concrete lined cribbing (Appendix C) approximately 1.8 m (6 feet) square and 3 m (9.8 feet) in depth. It is currently licensed for 345.374 cubic metres per year for residential lawn, fairway and garden use (Ministry of Environment, 2017a).

HYDROGEOLOGICAL TESTING

A series of pumping tests were conducted on the well and Swanson's Pond to assess the long-term yield of the well and hydraulic relationships among the well, Swanson's Pond and Hickey Spring. Investigations included the following:

- 1. A 73-hour, constant rate pumping test on the well in January 2017, in conjunction with monitoring of water levels on Swanson's pond and Hickey Spring.
- 2. An 8-hour, pumping test on Swanson's Pond, in February 2017, in conjunction with monitoring of water levels on the well and Hickey Spring.
- 3. An 11.3-day, constant rate pumping test on the well in May 2017, in conjunction with monitoring of water levels on Swanson's pond and Hickey Spring.
- 4. A 27.3-day pumping test on the well in June-July 2017, in conjunction with monitoring of water levels on Swanson's pond and Hickey Spring.

Prior to and during pumping tests 1 and 3 above, water samples were taken from the well, Swanson's Pond and Hickey Spring for laboratory analysis of microbiological, chemical and physical parameters. Copies of the laboratory analyses are provided in Appendix G.

A description of the pumping test procedures and results of testing are provided in the following sections.

73-hour Pumping Test of Well (WID 25502)

Well (WID 25502) was pump tested, using the existing pump in the well, at a constant rate of 22.7 L/min (6.0 USgpm) by Tony Kaye (Albert Kaye and Sons Drilling Ltd.) for a period of 73 hours between January 20 and January 23, 2017. Discharge was piped to the drainage ditch north of the well. A total of 26,280 USgals was pumped during this period. Manual water level measurements in the well were taken during pumping and after pump shutdown at intervals normally prescribed for long-duration pumping tests (Ministry of Environment, 2010). A staff gauge on Swanson's Pond was also monitored manually during the test period and pressure transducers were installed in the well, on the pond and at Hickey Spring to record water level measurements every 10 minutes. An additional pressure transducer was used to measure barometric pressure in order to correct the water level data collected for barometric effects. During the test, 4.32 mm of precipitation was reported at the Gulf Island Secondary School weather station (Gulf Island Secondary School, 2017).

Pumping test drawdown and recovery data for the well are shown in Appendix D. Drawdown during the test (Figure 9) appeared to have essentially stabilized at 1.341 m (4.4 feet) below the pre-pumping (static) level of 0.994 m (3.26 feet). Extrapolation of the drawdown to 100 days without recharge suggests drawdown would reach 1.402 m (4.6 feet) indicating a specific capacity of 16.19 L/min per metre of drawdown (1.30 USgpm per foot of drawdown). At a pumping rate of 22.7 L/min (6.0 USgpm), only 12 percent of the available drawdown of approximately 11.28 m (37 feet) in the well would be utilized after 100 days thereby providing a significant safety factor.

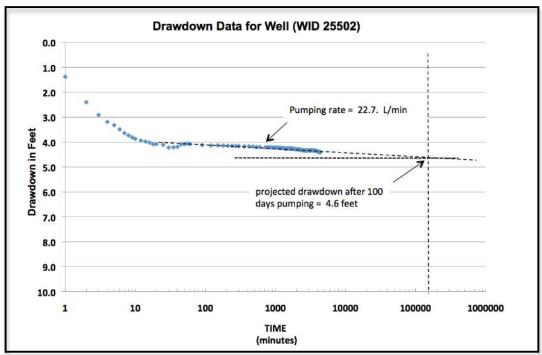


Figure 9. Drawdown data results for 73-hour pumping test on well.

Recovery after pumping was essentially 97 percent complete 9 hours after pump shutdown and then started to decline slowly (Appendix D).

Initially the water level on Swanson's Pond was rising prior to the well test, then began to level out and then started to decline after the first day of well pumping, falling approximately 3.5 cm to the end of the test (Figure 10). Pond levels continued to decline steadily a further 11 cm after the well test until January 30, 2017 (Figure 11).

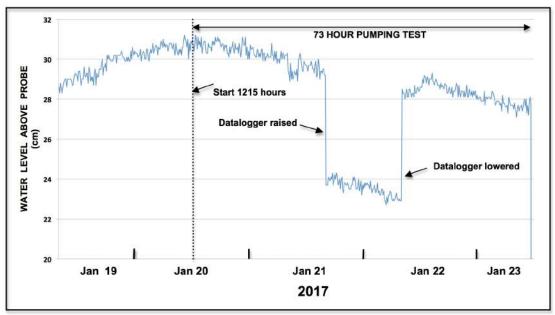


Figure 10. Water level on Swanson's Pond during pumping test of Well WID 25502.

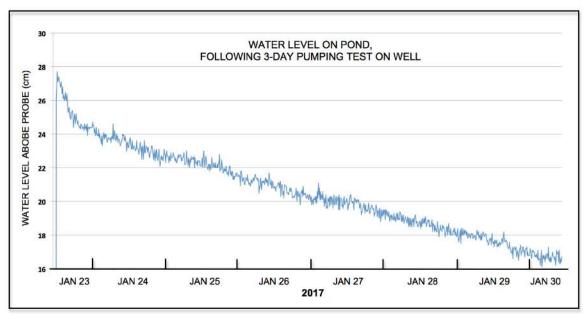


Figure 11. Water level on Swanson's Pond following pumping test of Well WID 25502.

The water level of Hickey Spring (Figure 12) remained relatively static during the 73-hour pumping test fluctuating approximately 0.5 cm, within the accuracy of the pressure transducer. A slight decreasing trend appears to have occurred during the last day of the test.

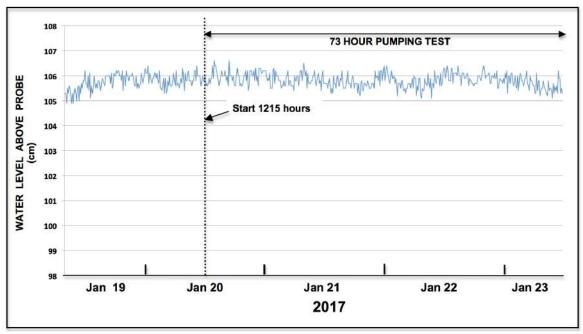


Figure 12. Water level in Hickey Spring during 73-hour pumping test.

Based on the water level monitoring results it appeared that the well pumping may have affected the water level on Swanson's Pond while at the same time the water

level in the pond was naturally declining. Further longer term testing of the well was recommended.

8-hour Pumping Test of Swanson's Pond

Swanson's Pond was pump tested at an average rate of 284 L/min (75 USgpm) by Tony Kaye (Albert Kaye and Sons Drilling Ltd.) for a period of 8 hours on February 2, 2017. Manual water level measurements were taken in the well during pumping and a staff gauge on Swanson's Pond was also monitored manually during the test period. Pressure transducers on the pond and the well also recorded water level measurements every 10 minutes. Hickey Spring was not monitored during this test. An additional pressure transducer was used to measure barometric pressure and correct the water level data collected.

During the pond test, the pond dropped 6.6 cm (Figure 13) while water level in the well dropped 5.1 cm (Figure 14). After the pond test, water levels on the pond and well were relatively stable to about 11:00 am on the day following the test. Water levels in the pond then started rising. Water levels in the well were not available as the datalogger was removed from the well for downloading. The volume of water pumped from the pond was approximately 36,000 USgals or 5455 gals/cm drop in pond level. This would suggest that the area occupied by the pond on February 2, 2017 was 2065 m² assuming no groundwater inflow to the pond during pumping. No precipitation was reported at the Gulf Island Secondary School weather station on February 1 and 2, 2017 (Gulf Island Secondary School, 2017).

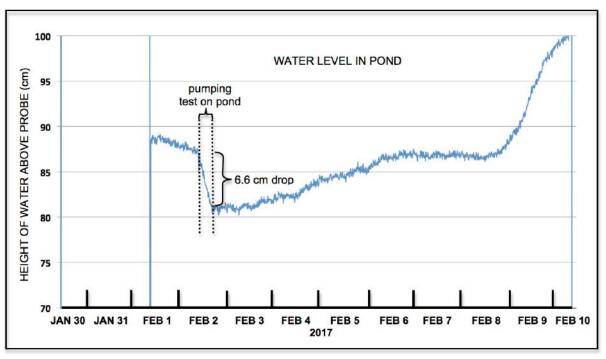


Figure 13. Water level in pond during pumping of pond on February 2, 2017.

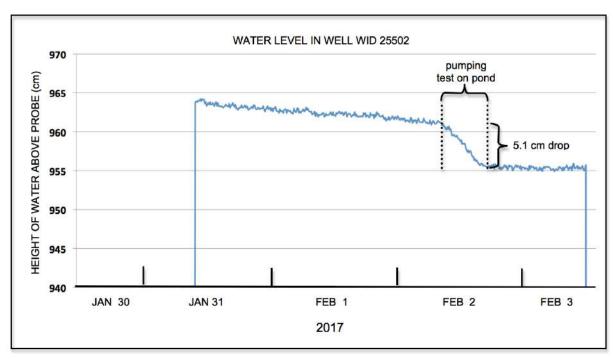


Figure 14. Water level in Well WID 25502 during 8-hour pumping test of Swanson's Pond on February 2, 2017.

Results of the pond testing confirmed a close hydraulic connection between water levels in the well and water levels of the pond. A significant portion of the water pumped therefore during the 73-hour well test may have been contributed by the pond. Further monitoring of water levels in the pond and the well during the period March 22 to April 3, 2017 also confirmed the close hydraulic connection between the pond and the groundwater regime as shown in Figures 15 and 16.

Based on the initial results of pump testing the well, pump testing the pond and water level monitoring, E. Booth proceeded with having the well sealed by Drillwell Enterprises Ltd., to a depth of 15.24 m (50 feet) to minimize possible seepage of any saline groundwaters into the well. He also proceeded with pumping the pond to further reduce the level of the pond and its potential influence on the well before conducting any further long-term well testing. By May 6, 2017 the pond level was lowered by approximately 0.76 m (2.5 feet), and monitoring of water levels in the well, the pond and Hickey Spring were recommenced. Photographs of the pond taken in 2017 are provided in Appendix H.

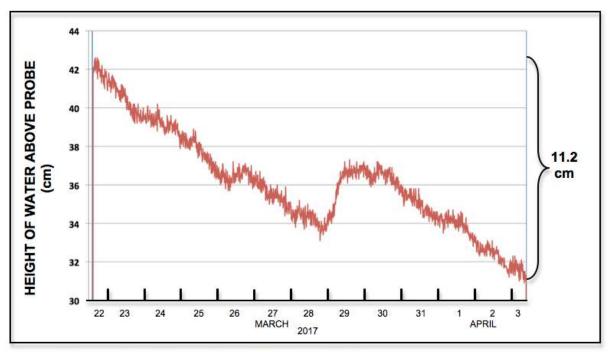


Figure 15. Water level on pond March 22 to April 3, 2017.

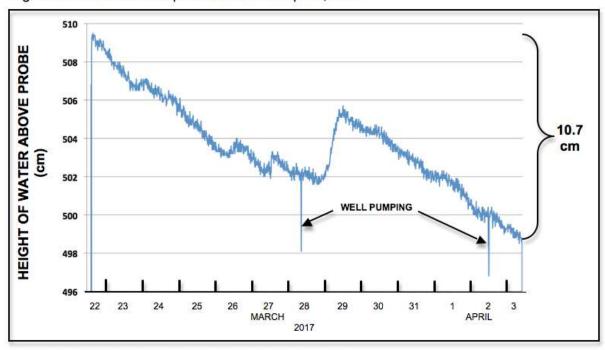


Figure 16. Water level in well March 22 to April 3, 2017.

11.3-day Pumping Test of Well (WID 25502)

Well (WID 25502) was pump tested, using the existing pump in the well, at a constant rate of 28.8 L/min (7.6 USgpm) by Eric Booth under supervision of A. Kohut, P.Eng., for a period of 11.3 days (271.6 hours) between May 17 and May 28, 2017. A total of 123,850 USgals was pumped during this period. Discharge was piped 41 m (135 feet) towards the drainage ditch east of the well. Manual water level measurements in the

well were taken for 100 minutes during pumping and after pump shutdown.

Pressure transducers were installed in the well, on the pond and at Hickey Spring to record water level measurements every 10 minutes. An additional pressure transducer was used to measure barometric pressure and correct the water level data collected. During the test, 12.7 mm of precipitation was reported at the Gulf Island Secondary School weather station (Gulf Island Secondary School, 2017).

Pumping test drawdown and recovery data for the well are shown in Appendix E. Drawdown during the test (Figure 17) reached 2.90 m (9.51 feet) below the prepumping (static) level of 2.127 m (6.98 feet). Extrapolation of the drawdown to 100 days without recharge suggests drawdown would reach 4.4 m (14.43 feet) indicating a specific capacity of 6.55 L/min per metre of drawdown (0.52 USgpm per foot of drawdown). These values are approximately 40 percent of the values estimated from the results of the 73-hour pumping test. At a pumping rate of 28.8 L/min (7.6 USgpm), close to 40 percent of the available drawdown of approximately 11.28 m (37 feet) in the well would be utilized after 100 days but still maintaining a significant safety factor.

Recovery after pumping was essentially 86 percent complete 24 hours after pump shutdown (Appendix E).

Prior to the start of the 11.3 day pumping test on the well, the water levels in the well and Swanson's Pond were relatively stable as shown in Figure 18(a) and 18(c), respectively. After pump startup on May 17, the pond level began to decline rapidly, dropping 20 cm by May 25 and falling below the level of the pressure transducer. A drop of 20 cm in the pond represents approximately 184.8 m³ or 48,818 USgals assuming a pond area of 924 m². This suggests that the pond may have contributed up to 56 percent of the well flow during the period May 17 to May 25 (11,440 minutes). Water levels at Hickey Spring shown in Figure 18(b), remained relatively stable, rising slightly during the first few days of the pumping test. The pumping effect of the well on the pond is clearly discernable in Figure 18(c). **Well pumping, however showed no measurable effect on Hickey Spring.**

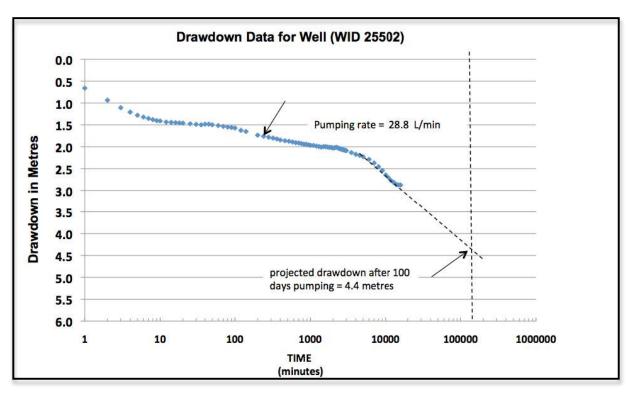


Figure 17. Drawdown data results for 11.3-day pumping test on well.

Electrical conductivity of the well water was monitored daily and dropped relatively steadily during the test from 504 μ S/cm on May 17 to 426 μ S/cm on May 28 (Figure 19). This decline was likely due to recharge from the pond which is lower in conductivity compared to the groundwater.

27.3-day Pumping Test of Well (WID 25502)

Well (WID 25502) was pump tested, using the existing pump in the well, at a constant rate of 28.8 L/min (7.6 USgpm) by Eric Booth under supervision of A. Kohut, P.Eng., for a period of 27.3 days (655.7 hours) between June 4 and July 1, 2017. On June 12 and 13 the flow was reduced over a period of 23 hours due to a probable restriction in the discharge line. The flow resumed at 28.8 L/min (7.6 USgpm) at 16:20 hours on June 13. Discounting the reduced flow period, approximately of 288,511 USgals was pumped during the pumping test. Pressure transducers were in place in the well, on the pond and at Hickey Spring to record water level measurements every 10 minutes. An additional pressure transducer was used to measure barometric pressure and correct the water level data collected. Discharge was piped 41 m (135 feet) towards the drainage ditch east of the well. Manual water level measurements in the well were taken for 100 minutes after pump shutdown. During the test, 25.4 mm of precipitation was reported at the Gulf Island Secondary School, 2017).

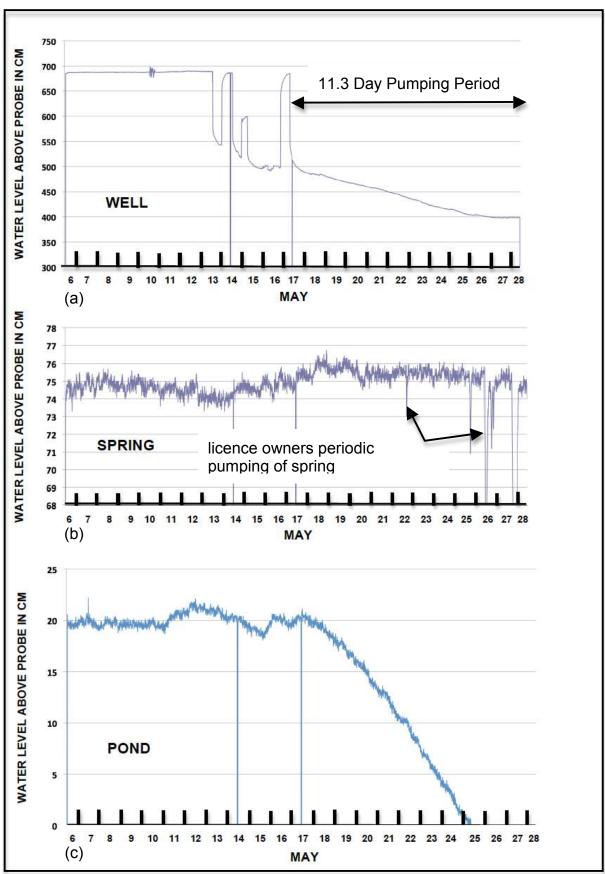


Figure 18. Comparison of water levels in well, spring and pond during the 11.3-day pumping test on the well.

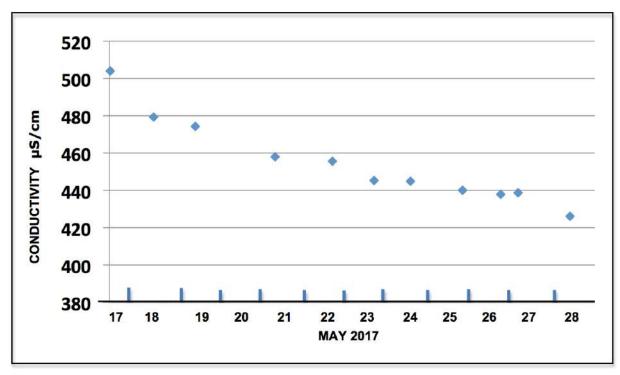


Figure 19. Variations in conductivity at 25 °C of well water during 11.3-day pumping test.

Pumping test drawdown and recovery data for the well are shown in Appendix F. Drawdown during the test (Figure 20) reached 6.80 m (22.3 feet) below the prepumping (static) level of 2.410 m (7.91 feet). Extrapolation of the drawdown to 100 days without recharge suggests drawdown would reach 9.5 m (31.17 feet) indicating a specific capacity of 3.03 L/min per metre of drawdown (0.24 USgpm per foot of drawdown). At a pumping rate of 28.8 L/min (7.6 USgpm), close to 85 percent of the available drawdown of approximately 11.28 m (37 feet) in the well would be utilized after 100 days. Operating at 28.2 L/min (7.6 USgpm) would not allow for a sufficient safety factor to be maintained in the well.

Recovery after pumping was essentially 80 percent complete 36 hours after pump shutdown (Appendix F). Complete recovery was not achieved as the non-pumping water level in the well reflected the drop in pond level.

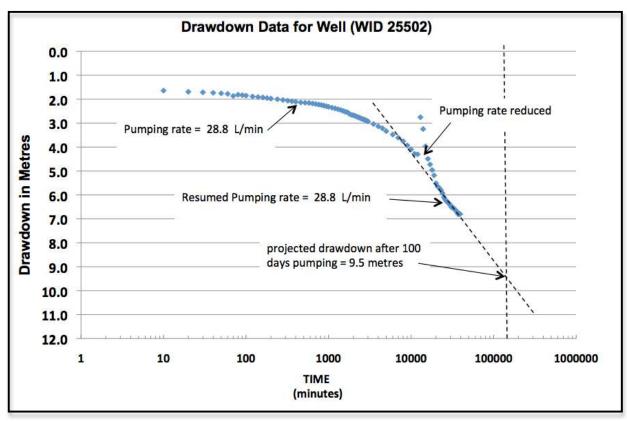


Figure 20. Drawdown data results for 27.3-day pumping test on well, June 4 to July 1, 2017.

Prior to the start of the 27.3-day pumping test on the well, the water levels in the well and Swanson's Pond were relatively stable as shown in Figure 21 and 22 respectively. After pump startup on June 4, the pond level began to decline rapidly, dropping approximately 90 cm by July 1. During pumping, the water level in the pond dropped several times below the transducer requiring lowering of the transducer. Unfortunately this introduced some errors, possibly as much as 10 cm in the data collected and it was not possible to verify the accuracy of the data collected during the last three days of the test. Water level surveys conducted between the well pumphouse floor and the pond level on May 28 and June 27 indicated a difference in pond levels of 72 cm over this period. Pond area at this time was estimated by E. Booth to be approximately 750 m². A drop of 72 cm in the pond represents approximately 540 m³ or 142,652 US gals assuming a pond area of 750 m². This suggests that the pond may have contributed up to 59 percent of the well flow during the period June 4 to June 27 (31,740 minutes). Water levels at Hickey Spring as shown in Figure 23 remained relatively stable during June apart from declines during periodic pumping of the spring.

Electrical conductivity of the well water was monitored for a number of days during the test and showed an overall increase from 445 μ S/cm on June 5 to 549 μ S/cm on June 27 (Figure 24). This rise may be due to drawing upon zones of more mineralized groundwater with pumping.

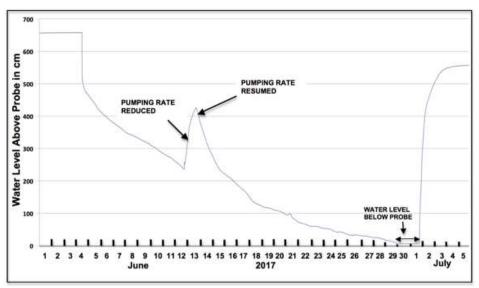


Figure 21. Water level in well during 27.3-day pumping test.

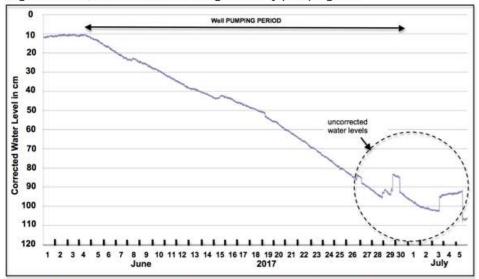


Figure 22. Water level in pond during 27.3-day pumping test.

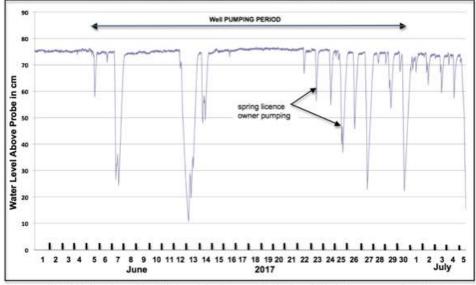


Figure 23. Water level in Hickey Spring well during 27.3-day pumping test.

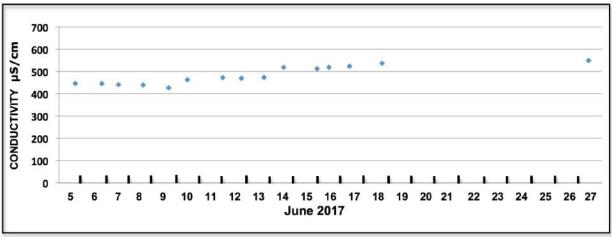


Figure 24. Variations in conductivity at 25 °C of well water during 27.3-day pumping test.

WATER QUALITY RESULTS

A summary of all laboratory analyses completed for this project is provided in Table 1. Laboratory reports are contained in Appendix G.

Well WID 25502

Well WID 25502 was sampled on four occasions, Nov. 9, 2016 before any pump testing, January 23, 2017 after pump testing for 70 hours 40 minutes, May 17, 140 minutes after starting the 11 day test and May 28 near the end of the 11.3 day test after 11.1 days.

All groundwater samples exhibited a similar overall chemistry that can be classified as a sodium-calcium-bicarbonate-chloride type with total mineralization ranging from 171 to 310 mg/L total dissolved solids. All samples met or exceeded the *Guidelines for Canadian Drinking Water* (Federal-Provincial-Territorial Committee on Drinking Water, 2017) for all parameters tested except for: total coliforms, E. Coli, colour, turbidity, iron, manganese and sulphide. Presence of a slight sulphur odour was also detected during field sampling indicative of hydrogen sulphide (H₂S). Most of these parameters, such as colour, turbidity, iron, manganese and hydrogen sulphide are of aesthetic concern and do not pose a health hazard. The Langelier index ranging from -0.996 to -1.26 indicates mild to moderate corrosive tendencies.

Total coliforms ranged from 210 to >2100 CFU/100ml and E.Coli ranged from 0 to 8.0 CFU/100ml. Proximity of the well to Swanson's Pond and results of pump testing indicate a close communication between the pond and the groundwater regime. It is evident that the well is at risk of containing pathogens and will require disinfection according to the *Guidance Document for Determining Ground Water at Risk of Containing Pathogens (GARP)*. Version 2 (BC Ministry of Health, 2016).

Table 1 Summary of water quality analyses

Table 1. Summary of water								
Parameters/Site and Sampling Date	WELL WID 25502	WELL WID 25502	WELL WID 25502	WELL WID 25502	Swanson's Pond	Hickey Spring	Canadian DWGuideline 2017	Units
	Nov 9/16	Jan 23/17	May 17/17	May 28/17	Nov 9/16	Jan 10/17	2011	
PHYSICAL TESTS			-	•				
True Colour	050	32	38	28	75	040	< or =15	TCU
Conductivity	258	545	493	419	132	219		μS/cm
Total Hardness (CaCO ₃)	55.6 7.8	43.7	42.4 7.4	45.1 7.5	44.6 7.5	71.9	70 10 5	mg/L
pH Total Dissolved solids (TDS)	171	7.8 310	282	263	90	7.0 155	7.0-10.5 < or = 500	pH units mg/L
Turbidity	8.0	3.1	3.9	2.5	3.5	50.0	<1.0	NTU
DISSOLVED ANIONS								
Alkalinity (Total as CaCO ₃)	100	111	115	109	41.6	58.9		mg/L
Alkalinity (PP as CaCO ₃)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		mg/L
Bicarbonate	122.0	136	141	133	50.7	71.9		mg/L
Carbonate	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		mg/L
Hydroxide	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		mg/L
Chloride	13	67	54	47	9.3	20	< or = 250	mg/L
Fluoride	0.170	0.190	0.190	0.170	0.055	0.064	1.5	mg/L
Nitrate (N)	<0.020	<0.0050	<0.020	<0.020	0.107	0.771	10	mg/L
Nitrite (N) Total Organic Nitrogen (N)	0.0082	<0.020 0.324	<0.0050	<0.0050 0.386	0.0073	0.0136	1	mg/L
Total Ammonia (N)		0.324		0.300				mg/L mg/L
Nitrate plus Nitrite (N)	<0.020	<0.020		<0.020	0.115	0.784		mg/L
Total Nitrogen (N)	-0.020	0.458		0.495	0.110	0.704		mg/L
Total Organic Carbon (C)		4.56		5.830				mg/L
Total Phosphorus (P)	0.0889				0.0550			mg/L
Sulphate		39.6	32.1	25.1		13.1	< or =500	mg/L
TOTAL METALS								
Aluminum		161	125	104		3080		μg/L
Antimony		<0.50	<0.50	<0.50		<0.50	6	μg/L
Arsenic	2.83	6.62	5.31	5.17	0.67	0.65	10	μg/L
Barium		19.1	15.7	17.1		53.5	1000	μg/L
Beryllium Bismuth		<0.10 <1.0	<0.50 <1.0	<0.10 <1.0		<0.10 <1.0		
Boron		58	53	51		<50	5000	μg/L
Cadmium		0.010	0.010	<0.010		0.041	5	µg/L
Chromium		<1.0	<1.0	<1.0		2.9	50	µg/L
Cobalt		< 0.50	<0.20	<0.20		0.78		μg/L
Copper	15.9	1.58	1.27	0.90	3.49	7.94	< or =1000	μg/L
Iron	2680	697	813	650	265	2470	< or = 300	μg/L
Lead	5.88	0.21	0.27	<0.20	0.46	0.93	10	μg/L
Manganese Moreum	713	372 <0.010	319 <0.010	377 <0.010	44.4	77.6 <0.010	< or = 50	µg/L
Mercury Molybdenum		<1.0	<1.0	<1.0		<1.0	ı	μg/L μg/L
Nickel		<1.0	<1.0	<1.0		3.5		μg/L
Selenium		<0.10	<0.10	<0.10		<0.10	50	µg/L
Silicon		6970	5890	5290		10500		μg/L
Silver		< 0.020	<0.020	< 0.020		0.030		μg/L
Strontium		332	293	304		129		μg/L
Thallium		<0.010	<0.010	<0.010		<0.050		μg/L
Tin Titonium		<5.0	<5.0	<5.0		<5.0		μg/L
Titanium Uranium		7.2 <0.10	5.3 <0.10	<5.0 <0.10		104 <0.10	20	ugfl
Vanadium Vanadium		<0.10 <5.0	<0.10 <5.0	<0.10 <5.0		<0.10 5.0	20	μg/L μg/L
Zinc	27.0	<5.0	<5.0	<5.0	7.4	12.4	< or = 5000	μg/L
Zirconium	21.0	<0.50	0.14	0.15	1.7	0.50		PA C
Calcium	16.5	13.3	12.9	13.6	11.8	20.0		mg/L
Magnesium	3.48	2.51	2.44	2.73	3.69	5.33		mg/L
Potassium	0.850	0.730	0.779	0.850	1.74	1.76		mg/L
Sodium	28.0	100	86.2	73	9.6	17.2	< or = 200	mg/L
Sulphur	<3.0	14.6	13.5	8.9	3.2	4.7		mg/L
MICROBIOLOGICAL								
Total Coliforms	>2100	480	230	210	280	>2800	ND	CFU/100mL
Escherichia Coli (E.Coli)	2	2	8.0	0	150	87	ND	CFU/100mL
Heterotrophic Plate Count Iron Bacteria		32 35000		26 2200				CFU/100mL CFU/100mL
Sulphate reducing bacteria		120000		27000				CFU/100mL
•		120000		21000				OI O/ TOUTIL
OTHER Total Sulphide		0.107		0.165			< OF = 0.05	mail
Total Sulphide Langelier Index (@4.4c)	 	-0.996		-1.26			< or = 0.05	mg/L
Langelier Index (@4.40)		0.0450		-0.218				
Saturation pH (@4.4C)		8.78		8.77				
Saturation pH (@60C)		7.74		7.73				
* Turbidity guideline applies to a	surface water		roundwater so		direct influen	ce of surface v	vater	

^{*} Turbidity guideline applies to a surface water source or a groundwater source under the direct influence of surface water.

Red font indicates exceedances.

ND means none detectable.

Swanson's Pond

Swanson's Pond was sampled on one occasion on November 9, 2016 and conductivity was checked periodically at different times during pump testing of the well. Based on the November sample, the water quality of Swanson's Pond can be classified as a calcium-magnesium-bicarbonate type with low overall mineralization (TDS of 90 mg/L and conductivity of 132 μ /cm) observed during the winter of 2016. Conductivity readings recorded in 2017 were: 126.3 μ /cm (January 23), 200.2 μ /cm (June 5) and 203.8 μ /cm (June 27). It is evident that infiltration of water from Swanson's Pond is resulting in a dilution effect on the groundwater pumped from the well. In November 2016, the pond showed elevated total coliforms (280 CFU/100ml) and E. Coli (150 CFU/100ml). Swanson's pond is a potential source of coliforms found in the pumped groundwater.

DISCUSSION and CONCLUSIONS

Extended duration pump testing of Well WID 25502 up to rates of 28.8L/min (7.6 USgpm) has shown a direct communication between the well and the water in Swanson's Pond. Under pumping conditions, up to 59 percent of the water pumped from the well can be attributed to inflow from the pond. This suggests that the groundwater component of flow was providing just over 11.4L/min (3 USgpm).

Extrapolation of well drawdown data to 100 days without precipitation recharge indicates that a long term pumping rate of 28.8 L/min (7.6 USgpm) would not provide for an adequate drawdown safety factor in the well. Utilizing a specific capacity of 3.03 L/min per metre of drawdown (0.24 USgpm per foot of drawdown) and a safety factor of 50 percent indicates that theoretically the well should be able to sustain a rate of 16.7 L/min (4.4 USgm) over the long term in conjunction with the pond.

A sustainable pumping rate of 16.7 L/min (4.4 USgpm) however, would also depend on sufficient water being present in Swanson's Pond on an annual basis. For a normal year with precipitation of 987 mm, potential annual evapotranspiration of approximately 671 mm would be anticipated, leaving 316 mm of water available in Swanson's Pond. Potential evapotranspiration was estimated based on the Thornthwaite-type analysis adapted from Dingman (2001) that uses the Hamon (1963) method. Based on a pond area of 924m², this would leave 292 m³ or 77,139 USgals, or enough water to sustain a pumping rate from the pond of approximately 1.9 L/min (0.5 USgpm) over 100 days. This analysis however, does not consider possible groundwater seepage into the pond or years with below normal precipitation.

Without a detailed topographic survey of the pond, an accurate determination of the pond area and available water at various water levels is not currently possible. Based on the information currently available and given the uncertainties involved and interrelationship between the groundwater regime and pond levels, it would be prudent to rate the long-term capacity of the well in conjunction with the pond at a maximum rate of 13.2 L/min (3.5 USgpm).

Long-term monitoring of Hickey Spring during 2017 showed that the well pumping tests had no measurable affects on the spring. Use of the well at a maximum rate of 13.2 L/min (3.5 USgpm) would have no measurable effect on existing wells, springs, or other water supplies.

Due to the close communication between the pond and the groundwater regime, the well is at risk of containing pathogens and will require disinfection according to the *Guidance Document for Determining Ground Water at Risk of Containing Pathogens (GARP), Version 2* (BC Ministry of Health, 2016). In addition, a properly designed water treatment system will be required to reduce levels of colour, turbidity, iron and manganese and hydrogen sulphide. These latter parameters are of aesthetic concern and do not pose a health hazard.

RECOMMENDATIONS

The following recommendations are provided for consideration:

- In designing an adequate water treatment system for the well, it may be necessary to conduct further laboratory testing of the well water, that may include determining both total and dissolved levels of constituents such as iron and manganese. This would require field filtering and acidification of samples prior to laboratory submission
- 2. When put into production, the well discharge should be equipped with a flow meter to monitor production with time and also a water level sensor to monitor water levels.
- 3. A permanent staff gauge should be installed on Swanson's Pond to monitor water level changes with time.
- 4. Results of items 2 and 3 should be reviewed annually as part of an ongoing well operation and monitoring program.
- 5. A water licence would likely be required for use of the well for water supply purposes. Application can be made to the Ministry of Forests, Lands and Natural Resource Operations in Nanaimo. Information on the application process can be found at:
 - FrontCoiunterBC http://www.frontcounterbc.gov.bc.ca/info/

CLOSURE

This report was prepared in accordance with generally accepted engineering, hydrogeological and consulting practices. It is intended for the prime use of E. Booth and Salt Spring Ventures Inc, in connection with its purpose as outlined under the scope of work for this project. This report is based on data and information available to the author from various sources at the time of its preparation and the

findings of this report may therefore be subject to revision. Data and information supplied by others has not been independently confirmed or verified to be correct or accurate in all cases. Any errors, omissions or issues requiring clarification should be brought to the attention of the author. The author and Hy-Geo Consulting accepts no responsibility for damages suffered by any third party as a result of any unauthorized use of this report.

Respectfully submitted,

Alan P. Kohut PEng Principal and Senior Hydrogeologist

HY-GEO CONSULTING

REFERENCES

Allen, D.M., Mackie, D.C., Surrette, M.J., and E. K. Appaih-Adjei. 2008. *Climate Change: Implications for Groundwater Recharge and Saltwater Intrusion on the Gulf Islands.* Presentation slides for Mayne Island Integrated Water Systems Society (MIIWSS) workshop, Mayne Island, Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia.

BC Ministry of Health. 2016. *Guidance Document for Determining Ground Water at Risk of Containing Pathogens (GARP), Version 2.* Available at BCWWA Internet website https://www.bcwwa.org/news/waterline/1388-bc-ministry-of-health-ground-water-guidance-documents-update.html

CRD. 2017. Capital Regional District Webmap, Internet website https://maps.crd.bc.ca/Html5Viewer/?viewer=public

Dingman S.L. 2001. *Physical Hydrology*. 2nd ed. New Jersey: Prentice Hall.

Federal-Provincial-Territorial Committee on Drinking Water. 2017. Guidelines for Canadian Drinking Water Quality, Summary Table, February 2017. Health Canada internet website https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/ewh-semt/alt_formats/pdf/pubs/water-eau/sum_guide-res_recom/sum_guide-res_recom-eng.pdf

- Government of British Columbia. 2017. Biogeoclimatic Ecosystem Classification Subzone/Variant Map for the South Island Resource District, South Coastal Region, 1:250,000 scale. Ministry of Forests, Lands and Natural Resource Operations (MFLNRO), Victoria, British Columbia. ftp://ftp.for.gov.bc.ca/HRE/external/!publish/becmaps/PaperMaps/wall/DSI_So uthIslandResourceDistrict_SouthCoastRegion__wall.pdf
- Government of Canada. 2017. *Historic Climate Data*. Internet website http://climate.weather.gc.ca/index_e.html
- Greenwood, H.J. and M.G. Mihalynuk. 2009. *Saltspring Island Geology (adjoining quadrants of NTS 93B/11, 12, 13 &14)*. BC Ministry of Energy, Mines and Petroleum Resources, Open File 2009-11, 1:25 000 scale.
- Gulf Islands Secondary School. 2017. Daily and Monthly Rain Totals for 2017. http://www.victoriaweather.ca/raintotal.php?id=121&year=2017
- Hamon, W.R. 1963. *Computation of Direct Runoff Amounts from Storm Rainfall*. Intl. Assoc. Scientific Hydrol. Publ. 63:52-62.
- Hodge, W.S. 1977. A Preliminary Geohydrological Study of Saltspring Island.
 Groundwater Section, Hydrology Division, Water Investigations Branch, BC
 Ministry of Environment.
- Hodge, W.S. 1995. *Groundwater Conditions on Saltspring Island.* Groundwater Section, Hydrology Branch, Water Management Division, Ministry of Environment, Land and Parks.
- Islands Trust Staff Report, 2016. Letter to Salt Spring Island Local Trust Committee for meeting of June 29, 2016. Application to Amend the Land Use Bylaw, Preliminary Report 2. File No.: SS-RZ-2013.7
- Kohut, A.P., W.S. Hodge, D.A. Johanson, and D. Kalyn. 1984. *Natural Seasonal Response of Groundwater Levels in Fractured Bedrock Aquifers of the Southern Coastal Region of British Columbia*. Proceedings of International Groundwater Symposium on Groundwater Utilization and Contaminant Hydrogeology, Montreal, Quebec. International Association of Hydrogeologists/Canadian National Chapter.
- Larocque, I. 2014. *The Hydrogeology of Salt Spring Island, British Columbia.* Masters dissertation. Simon Fraser University, Burnaby, Canada.
- Larocque, I., Allen, D.M., and D. Kirste. 2015. *The Hydrogeology of Salt Spring Island, British Columbia*. A summary of research conducted by Simon Fraser University as part of a project "Risk Assessment Framework for Coastal Bedrock Aquifers", Simon Fraser University, Burnaby, Canada.

- Ministry of Environment. 2010. *Guide to Conducting Well Pumping Tests*. Water Stewardship Information Series. ISBN 978-0-7726-7033-5. Internet website http://www.env.gov.bc.ca/wsd/plan_protect_sustain/groundwater/guide_to_conducting_pumping_tests.pdf
- Ministry of Environment. 2017a. *British Columbia Water Resources Atlas*. Internet website http://maps.gov.bc.ca/ess/sv/wrbc/
- Ministry of Environment. 2017b. *Groundwater Observation Well Network*. Internet website http://www.env.gov.bc.ca/wsd/data_searches/obswell/map/obsWells.html
- Muller, J.E., and J.A. Jeletzky. 1970. *Geology of the Upper Cretaceous Nanaimo Group, Vancouver Island and Gulf Islands, Canada*. Geol. Surv. Can. Pap. 69-25. 77 pp.
- Salt Spring Island Archives. 2017. *Ganges Creek*. http://saltspringarchives.com/
- Van Vliet, I.J.P., Green, A.J., and F.A. Kenney. 1987. *Soils of the Gulf Islands of British Columbia. Volume 1. Soils of Saltspring Island.* Report No. 43, British Columbia Soil Survey, Research Branch, Agriculture Canada.

APPENDIX A

Photographs taken during excavation of Swanson's Pond, late summer 2008.

Photo 1. Shale (mudstone) bedrock, blasted and excavated late summer 2008, photograph looking northeasterly.

Photo 2. Excavated pond looking westerly, late summer 2008. Note groundwater seepage into pond.

Photo 3. Excavated pond looking northerly showing exposed stoney marine clay overlying glacial till, late summer 2008.

Photo 4. Shale (mudstone) bedrock exposed in excavation, late summer 2008. Photograph looking northeasterly.

APPENDIX B

		!	₩ell	DRI Construction Report	LINELL ENTERPRIS	ES (TO Minis	by Well ID Plate Number: 25502
	BRITISH	Ministry	- D Mini		4994 Policy Road		try Well Tag Number:onfirmation/alternative specs, attached
	COLUMBIA In Best Place on Zanth.	Environ	nent □Well	Alteration Report pho-	eneviewe po 140 can	ired. 🗆 O	riginal well construction report attached
• •	Red lettering	g indicates i	ninimum mand	atory information.		See reverse for	notes & definitions of abbreviations.
•)wner name:	SALT	FPRING	UBHTURES INC.	(BOOTH, GRE	<u></u>	
ı	Nailing addre	55: _			Town <u>Sal/†</u>	Spainy 2	Prov. B. C. Postal Cod
1	Well Location	: Address:	Street no	V 7 /ch	ARK DR	To	wn Salt Spring Isto. Rg. 3-E Lend Dietrict Covicher
	or Legal desi or PID:	cubaon: [9]		ption of well location (atlach		sc. <u> 5 </u>	Rg:3-1 Lend Dietrick Covicher
			_ 300, DESCI	ption of weat location (agaza)	SABCOL II HELD.	•	There is the state of the state
	NAD 83: Zon	e: <i>[</i> D	— (and) UTM E	asting: <u>462762-</u> lorthing: <u>5476691</u>		Lafitude (see n	ote 3):
	see note 2) Joshool of deil	lina: 🛣	N METU CO	orthing: <u>54/164/</u>		Longitude:	(specify): Dunk Rot.
				or ∟ muorrocary ∟ auger ∟ or Ground elevation:			
	class of well	[see note 5];	WATER P	wpgムy Sub-clas	s of well: Domes	00 (see /ibile 4) 177.←	<u> </u>
				private domestic water suppl			etriel: Other (spectry):
	Lithologic	descripti	ON (see notes 7-	14) or closure descripti	Off (see notes 15 and 16)	Water beginn	
	,From ⊓	o Relat bgl) Hardo	ive i Colour	i Material Description (Use recon	nmended terms on reverse.	. Estimated Flow	Observations (e.g., fractured, weathered,
	1			1.	arriount, ir applicable)	(Vagpm)	well sorted, sitty wash), closure details
		<u>- - - - - - - - - - - - - -</u>	BR	DENSE CLAY		<u> </u>	· · · · · · · · · · · · · · · · · · ·
	2 10	H H	- BL	SHALE (BEDR	o (le_)	"	
						+	
	 -	-		<u> </u>	_ 	<u> </u>	<u> </u>
	<u> </u>	<u> </u>	<u> </u>		 :	ļ	
		- .		ļ	 	<u> </u>	LOWAT 20 Gays
			<u> </u>			<u> </u>	40' 12"
	 	 				 	60 12
	 				·		80 12
			-			1	100 12 90
	Casing del	Dia	PullED	Open Hole Thickness Drive Shoe	Screen details	Dia	Type (see note 18) Skot Size
	0 17	6	STEEL BE	1217 -	 	+ +	· · · · · · · · · · · · · · · · · · ·
	17.100	2 6	OJEN RU	sce i i	J. I.,	ــــــــــــــــــــــــــــــــــــــ	· .
				Depth: <u>/ 2</u> f	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Uncased hole
	Method of Instal	lation: Pou	red Dumped	Thickness: 2 i			ize □ Plastic □ Other (specify):
			pecify):				☐ Slotted ☐ Perforated pipe
	Diameter:	-		Thickness:i			Plate Cither (specify):
	Front:ft (b	gl) To:fl	(bgf) Perforated:	From:ft (bgl) To:ft.(bg			Thickness:in
	Download	hac		· · · · · · · · · · · · · · · · · · ·	Type and size of mat Final well con		3
	Developed	-	letters Tuttures	Inn . 🗆 Rother	Total depth drilled:_	-	; Finished well depth: <u>/oo</u> ft (bgl)
-	☑ An money (☐ Other (speci		wanted Lenth	ing ☐ Baning Total duration: hr	Floral etick up:		Depth to bedrock: Zft (bgl
	Notes:				SWL:	ft (lotoc) .	Estimated well yield: / 2_ Magpm
	Well yield		•		Artesian flow:		pm, or Ariesian pressure: ft
•		Air lifting [Bailing Othe		Type of well cap: (Where well ID plate		7 D Well disinfected; ∠ Yes □ No ~
	Rate: SWL before tes	t	USgern Durat fi(btoc) Pumping		Wall alaquas b		· · · · · · · · · · · · · · · · · · ·
	Obvious w	ater quali	ty characteri	stics:	Reason for closure:		ta de la companya de
,	Z Fresh ☐ S	alty ⊡ Clea	Choudy []	Sediment 🗌 Gas	Method of closure: [Sealant material:	⊥roured ∐Pu	mped Backfill material:
	Colour/odour_	<u> </u>	3R	Water sample collected:	Details of closure (see	note 17):	
	Well driller			1 11000			
	Name (first, l Registration n			6 WATT -1402	Date of work n	YYYAMADDN ·	
	Consultant (II	applicable, na	me and company):			9/08	Completed: 08/09/09
	DECLARATION: has been done in	Well construct accordance w	ion, well alteration of the the requirements	r well closure, as the case rizay be, In the Water Act and the Ground	Comments:	7	
	Signature of	Driller Resp	onsible 🔏 🛦	wolld			
			n recorded in this we may be. Well viol-1	in port describes the works and hy well performance and water quality in activities and condition of the wor	crogeologic conditions at the rang not dustrepted as their	time of construction	n white: Customer copy cariary: Diffler copy Sheet of
	number of factor	s. including nat	urat variability, huma	in activities and condition of the wor	ks, which may change over b	me.	pink: Ministry copy

APPENDIX C

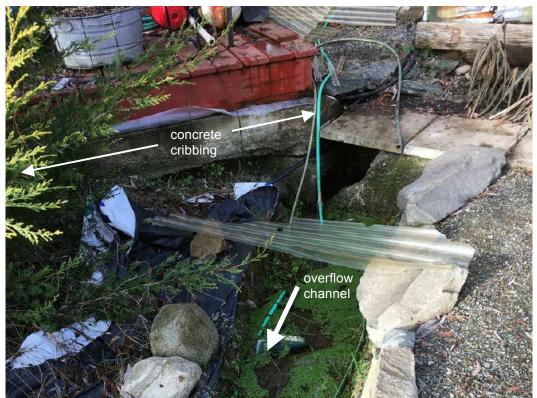


Photo 1. Hickey spring. Photograph taken January 10, 2017 looking northerly.

Photo 2. Hickey spring, wooden cribbing cover and pump intake pipe. Photograph taken January 10, 2017.

APPENDIX D

Pumping Test Data for Well (WID 25502)

Project: Booth Property Reference: all readings from top of well casing

Client: E. Booth

Location: Saltspring Island Stick up: 12 inches above ground

Date of Test: 20-Jan-17 Observation Wells: none

Test Conducted by: Tony Kaye (Albert Kay & Sons Drilling Ltd.)

Pumped Well:WID 25502Pump Start Time:12:15 PMJan.20/17Pumping Rate:22.7 L/min(0.38L/s)Pump End Time:1:15 PMJan.23/17Static Water Level:3.260feetAnalysis by:A. Kohut, P.Eng.

Drawdown Data: Recovery Data:

Time	Water Level	Drawdown	Time t	Time t'	Water Level	t/t'	Residual
(minutes)	(feet)	(feet)	(minutes)	(minutes)	(feet)		Drawdown (feet)
1	4.64	1.38	4385	5	3.9129	877.0	0.65
2	5.66	2.4	4395	15	3.4339	293.0	0.17
3	6.17	2.91	4405	25	3.3814	176.2	0.12
4	6.45	3.19	4415	35	3.3781	126.1	0.12
5	6.58	3.32	4425	45	3.3781	98.3	0.12
6	6.75	3.49	4435	55	3.3683	80.6	0.11
7	6.9	3.64	4440	60	3.41	74.0	0.15
8	6.99	3.73	4455	75	3.3584	59.4	0.10
9	7.07	3.81	4465	85	3.3715	52.5	0.11
10	7.13	3.87	4475	95	3.3519	47.1	0.09
12	7.2	3.94	4485	105	3.3813	42.7	0.12
14	7.24	3.98	4500	120	3.39	37.5	0.13
16	7.28	4.02	4560	180	3.39	25.3	0.13
18	7.35	4.09	4620	240	3.38	19.3	0.12
20	7.34	4.08	4680	300	3.38	15.6	0.12
25	7.37	4.11	4740	360	3.37	13.2	0.11
30	7.48	4.22	4800	420	3.36	11.4	0.10
35	7.47	4.21	4860	480	3.36	10.1	0.10
40	7.45	4.19	4920	540	3.36	9.1	0.10
45	7.35	4.09	4985	605	3.4043	8.2	0.14
50	7.34	4.08	5085	705	3.3880	7.2	0.13
55	7.33	4.07	5185	805	3.4142	6.4	0.15
60	7.34	4.08	5285	905	3.4175	5.8	0.16
90	7.38	4.12	5385	1005	3.4175	5.4	0.16
120	7.4	4.14	5485	1105	3.4240	5.0	0.16
150	7.39	4.13	5585	1205	3.4273	4.6	0.17
180	7.4	4.14	5685	1305	3.4339	4.4	0.17
210	7.41	4.15	5785	1405	3.4273	4.1	0.17
240	7.41	4.15					
270	7.42	4.16					
300	7.42	4.16		Data from t	ransducer		
360	7.43	4.17					
420	7.43	4.17					
480	7.44	4.18					
540	7.46	4.2					
600	7.46	4.2					
720	7.47	4.21					
780	7.47	4.21					
840	7.47	4.21					
900	7.48	4.22					
960	7.48	4.22					

APPENDIX D

Time	Water Level	Drawdown	Time t	Time t'	Water Level	t/t'	Residual
(minutes)	(feet)	(feet)	(minutes)	(minutes)	(feet)		Drawdown (feet)
1020	7.48	4.22					
1020	7.48	4.22					
1140	7.49	4.23					
1200	7.49	4.23					
1260	7.49	4.23					
		4.25					
1320 1380	7.51 7.52	4.26					
1440	7.53	4.27					
1500	7.51	4.25					
1560	7.52	4.26					
1620	7.52	4.26					
1680	7.52	4.26					
1740	7.52	4.26					
1800	7.53	4.27					
1860	7.54	4.28					
1920	7.54	4.28					
1980	7.55	4.29					
2040	7.55	4.29					
2100	7.55	4.29					
2160	7.56	4.3					
2220	7.57	4.31					
2280	7.57	4.31					
2340	7.58	4.32					
2400	7.58	4.32					
2460	7.59	4.33					
2520	7.59	4.33					
2580	7.59	4.33					
2640	7.60	4.34					
2700	7.60	4.34					
2760	7.61	4.35					
2820	7.60	4.34					
2880	7.59	4.33					
2940	7.59	4.33					
3000	7.59	4.33					
3060	7.60	4.34					
3120	7.60	4.34					
3180	7.59	4.33					
3240	7.59	4.33					
3300	7.59	4.33					
3360	7.59	4.33					
3420	7.59	4.33					
3480	7.60	4.34					
3540	7.60	4.34					
3600	7.60	4.34					
3660	7.60	4.34					
3720	7.60	4.34					
3780	7.61	4.35					
3840	7.61	4.35					
3900	7.62	4.36					
3960	7.63	4.37					
4020	7.65	4.39					1
4080	7.64	4.38					
4140	7.66	4.4					1
4200	7.65	4.39					1
4260	7.65	4.39					1
4320	7.66	4.4					
4380	7.67	4.41					

APPENDIX D

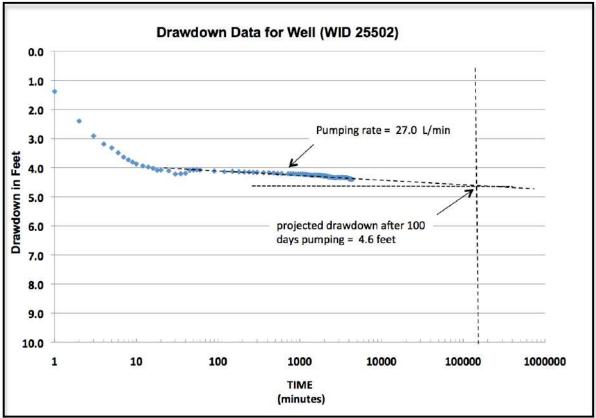


Figure 1. Drawdown data results for 73-hour pumping test on well.



Figure 2. Recovery data results for 73-hour pumping test on well.

APPENDIX E

Pumping Test Data for Well (WID 25502)

Project: Booth Property Reference: all readings from top of well casing

Client: E. Booth

Location: Saltspring Island Stick up: 12 inches above ground

Date of Test: 17-May-17 Observation Wells: none

Test Conducted by: Eric Booth under supervision of A. Kohut

 Pumped Well:
 WID 25502
 Pump Start Time:
 8:00 AM
 May 17/17

 Pumping Rate:
 28.8 L/min (0.48L/s)
 Pump End Time:
 5:35 PM
 May 28/17

Static Water Level: 2.127 m Analysis by: A. Kohut, P.Eng.

Drawdown Data: Recovery Data:

Time	Water Level	Drawdown	Time t	Time t'	Water Level	t/t'	Residual
(minutes)	(m)	(m)	(minutes)	(minutes)	(m)		Drawdown (m)
1	2.787	0.66	16296	1	4.212	16296.0	2.09
2	3.062	0.94	16297	2	3.93	8148.5	1.80
3	3.233	1.11	16298	3	3.72	5432.7	1.59
4	3.335	1.21	16299	4	3.68	4074.8	1.55
5	3.407	1.28	16300	5	3.62	3260.0	1.49
6	3.449	1.32	16301	6	3.58	2716.8	1.45
7	3.480	1.35	16302	7	3.54	2328.9	1.41
8	3.506	1.38	16303	8	3.51	2037.9	1.39
9	3.529	1.40	16304	9	3.50	1811.6	1.37
10	3.538	1.41	16305	10	3.479	1630.5	1.35
12	3.562	1.44	16307	12	3.457	1358.9	1.33
14	3.569	1.44	16309	14	3.440	1164.9	1.31
16	3.575	1.45	16311	16	3.428	1019.4	1.30
18	3.582	1.46	16313	18	3.415	906.3	1.29
20	3.585	1.46	16315	20	3.404	815.8	1.28
25	3.602	1.48	16320	25	3.382	652.8	1.26
30	3.614	1.49	16325	30	3.367	544.2	1.24
35	3.625	1.50	16330	35	3.349	466.6	1.22
40	3.612	1.49	16335	40	3.332	408.4	1.21
45	3.610	1.48	16340	45	3.316	363.1	1.19
50	3.625	1.50	16345	50	3.298	326.9	1.17
60	3.642	1.52	16355	60	3.265	272.6	1.14
70	3.661	1.53	16365	70	3.238	233.8	1.11
80	3.674	1.55	16375	80	3.213	204.7	1.09
90	3.685	1.56	16385	90	3.192	182.1	1.07
100	3.698	1.57	16395	100	3.179	164.0	1.05
120	3.752	1.63	16420	125	3.157	131.4	1.03
140	3.778	1.65	16470	175	3.087	94.1	0.96
200	3.861	1.73	16520	225	3.014	73.4	0.89
240	3.886	1.76	16570	275	2.944	60.3	0.82
280	3.909	1.78	16620	325	2.877	51.1	0.75
320	3.929	1.80	16670	375	2.828	44.5	0.70
360	3.947	1.82	16720	425	2.776	39.3	0.65
400	3.973	1.85	16770	475	2.73	35.3	0.60
460	3.989	1.86	16820	525	2.693	32.0	0.57
520	4.002	1.88	16920	625	2.627	27.1	0.50

			APP	ENDIX E	Ē	
Time	Water Level	Drawdown	Time t	Time t'	Water Level	t/t'
(minutes)	(m)	(m)	(minutes)	(minutes)	(m)	
580	4.017	1.89	17020	725	2.578	23.5
640	4.032	1.91	17120	825	2.544	20.8
700	4.041	1.91	17220	925	2.525	18.6
760	4.053	1.93	17320	1025	2.504	16.9
820	4.068	1.94	17420	1125	2.487	15.5
880	4.070	1.94	17520	1225	2.482	14.3
940	4.082	1.96	17620	1325	2.472	13.3
1000	4.093	1.97	17740	1445	2.465	12.3
1100	4.098	1.97		-		
1200	4.112	1.99		Data from t	ransducer	
1300	4.121	1.99				
1400	4.134	2.01		_		
1500	4.124	2.00				
1600	4.125	2.00				
1700	4.134	2.01				
1800	4.142	2.02				
1900	4.143	2.02				
2000	4.158	2.03				
2100	4.148	2.02				
2200	4.140	2.01				
2300	4.150	2.02				
2400	4.166	2.04				
2500	4.175	2.05				
2600	4.186	2.06				
2700	4.198	2.07				
2800	4.201	2.07				
2900	4.213	2.09				
3000	4.215	2.09				
3500	4.260	2.13				
4000	4.299	2.17				
4500	4.322	2.20				
5000	4.353	2.23				
6000	4.416	2.29				
7000	4.499	2.37				
8000	4.584	2.46				
9000	4.668	2.54				
40000	4 770	0.00				

2.65

2.71

2.78

2.82

2.87

2.87

2.88

2.90

10000

11000

12000

13000

14000

15000

16000

16295

4.773

4.834

4.904

4.944

4.992

4.998

5.003

5.030

Residual Drawdown (m)

> 0.45 0.42 0.40 0.38 0.36 0.36 0.35 0.34

APPENDIX E

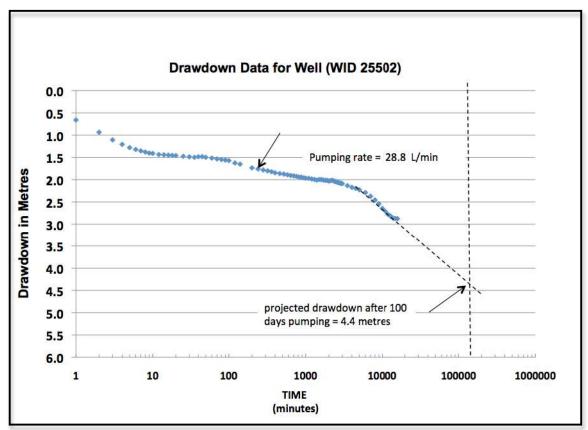


Figure 1. Drawdown data results for 11.3-day pumping test on well.

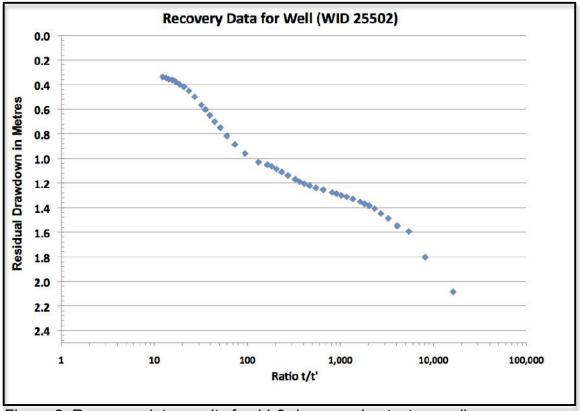


Figure 2. Recovery data results for 11.3-day pumping test on well.

APPENDIX F

Pumping Test Data for Well (WID 25502)

Project: Booth Property Reference: all readings from top of well casing

Client: E. Booth

Location: Saltspring Island Stick up: 12 inches above ground

Date of Test: 04-Jun-17 Observation Wells: none

Test Conducted by: Eric Booth under supervision of A. Kohut

 Pumped Well:
 WID 25502
 Pump Start Time:
 10:40 AM
 June 4/17

 Pumping Rate:
 28.8 L/min (0.48L/s)
 Pump End Time:
 6:30 PM
 July 1/17

 Static Water Level:
 2.410 m
 Analysis by:
 A. Kohut, P.Eng.

Drawdown Data: Recovery Data:

Time	Water Level	Drawdown	Time t	Time t'	Water Level	t/t'	Residual
(minutes)	(m)	(m)	(minutes)	(minutes)	(m)		Drawdown (m)
10	3.770	1.64	39341	1	8.618	39341.0	6.21
20	3.818	1.69	39342	2	8.580	19671.0	6.17
30	3.841	1.71	39343	3	8.558	13114.3	6.15
40	3.861	1.73	39344	4	8.543	9836.0	6.13
50	3.885	1.76	39345	5	8.526	7869.0	6.12
60	3.905	1.78	39346	6	8.502	6557.7	6.09
70	3.992	1.87	39347	7	8.475	5621.0	6.07
80	3.942	1.82	39348	8	8.454	4918.5	6.04
90	3.957	1.83	39349	9	8.436	4372.1	6.03
100	3.978	1.85	39350	10	8.415	3935.0	6.01
120	4.014	1.89	39352	12	8.378	3279.3	5.97
140	4.036	1.91	39354	14	8.348	2811.0	5.94
160	4.054	1.93	39356	16	8.325	2459.8	5.92
180	4.080	1.95	39358	18	8.302	2186.6	5.89
200	4.104	1.98	39360	20	8.279	1968.0	5.87
240	4.130	2.00	39365	25	8.198	1574.6	5.79
280	4.159	2.03	39370	30	8.170	1312.3	5.76
320	4.188	2.06	39375	35	8.115	1125.0	5.71
360	4.212	2.09	39380	40	8.071	984.5	5.66
400	4.235	2.11	39385	45	8.029	875.2	5.62
460	4.267	2.14	39390	50	7.993	787.8	5.58
520	4.278	2.15	39395	55	7.956	716.3	5.55
580	4.285	2.16	39400	60	7.921	656.7	5.51
640	4.309	2.18	39410	70	7.832	563.0	5.42
700	4.330	2.20	39420	80	7.763	492.8	5.35
760	4.351	2.22	39430	90	7.696	438.1	5.29
820	4.371	2.24	39440	100	7.632	394.4	5.22
880	4.399	2.27	39460	120	7.563	328.8	5.15
940	4.423	2.30	39480	140	7.449	282.0	5.04
1000	4.443	2.32	39500	160	7.337	246.9	4.93
1100	4.482	2.36	39540	200	7.091	197.7	4.68
1200	4.514	2.39	39580	240	6.721	164.9	4.31
1300	4.547	2.42	39640	300	6.286	132.1	3.88
1400	4.580	2.45	39740	400	5.8	99.4	3.39
1500	4.617	2.49	39840	500	5.388	79.7	2.98
1600	4.654	2.53	39940	600	5.059	66.6	2.65
1700	4.677	2.55	40040	700	4.844	57.2	2.43
1800	4.750	2.62	40140	800	4.675	50.2	2.27

			APPE	NDIX F			
Time	Water Level		Time t	Time t'	Water Level	t/t'	Residual Drawdown
(minutes)	(m)	(m)	(minutes)	(minutes)	(m)		(m)
1900	4.786	2.66	40240	900	4.58	44.7	2.17
2000	4.802	2.68	40340	1000	4.498	40.3	2.09
2100	4.832	2.71	40440	1100	4.413	36.8	2.00
2200	4.863	2.74	40540	1200	4.33	33.8	1.92
2300	4.885	2.76	40640	1300	4.254	31.3	1.84
2400	4.909	2.78	40740	1400	4.178	29.1	1.77
2500	4.941	2.81	40840	1500	4.109	27.2	1.70
2600	4.960	2.83	40940	1600	4.053	25.6	1.64
2700	4.982	2.86	41040	1700	3.988	24.1	1.58
2800	5.007	2.88	41140	1800	3.932	22.9	1.52
2900	5.034	2.91	41240	1900	3.881	21.7	1.47
3000	5.057	2.93	41430	2000	3.835	20.7	1.43
3500	5.165	3.04	41530	2100	3.783	19.8	1.37
4000	5.261	3.13	41630	2200	3.738	18.9	1.33
4500	5.344	3.22		•			
5000	5.463	3.34		Data from t	ransducer		
6000	5.607	3.48					
7000	5.737	3.61					
8000	5.881	3.75					
9000	6.060	3.93					
10000	6.227	4.10					
11000	6.413	4.29					
12000	6.428	4.30					
13000	4.882	2.76					
14000	5.376	3.25	•				
15000	6.099	3.97	•				
16000	6.620	4.49	•				
17000	6.855	4.73					
18000	7.086	4.96					
19000	7.311	5.18 5.52					
20000	7.642	5.65					
21000	7.773	5.72					
22000	7.845	5.80					
23000 24000	7.923 8.051	5.92					
25000	8.225	6.10					
26000	8.326	6.20					
27000	8.395	6.27	•				
28000	8.445	6.32					
29000	8.489	6.36					
30000	8.562	6.44					
31000	8.647	6.52					
32000	8.659	6.532					
33000	8.689	6.562					
34000	8.739	6.612					
35000	0.739	0.012					

35000

36000

37000

38000

39000

39340

8.781

8.843

8.928

8.927

8.927

8.927

6.654

6.716

6.801

6.800

6.800

6.800

APPENDIX F

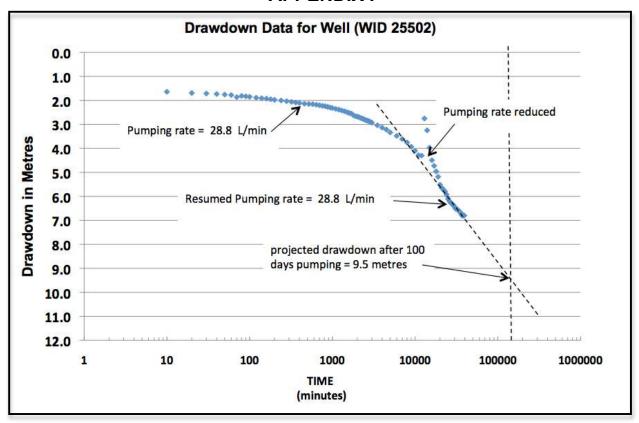


Figure 1. Drawdown plot for 27.3 day pumping test June 4 to July 1, 2017.

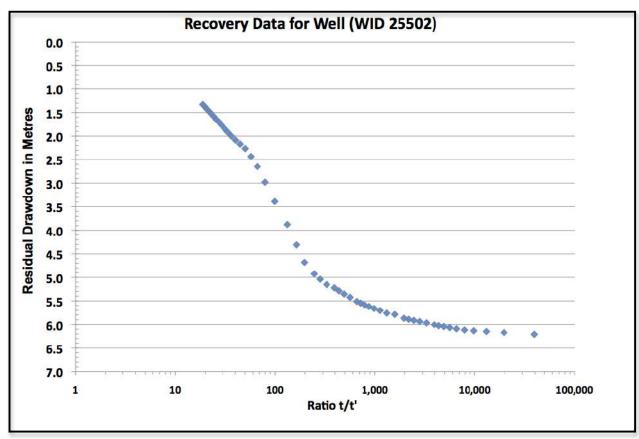


Figure 2. Recovery plot for 27.3 day pumping test June 4 to July 1, 2017.

APPENDIX G

WATER QUALITY LABORATORY ANALYSES

Your C.O.C. #: WI005071

Attention:ERIC BOOTH

SALT SPRING VENTURES INC.

Canada V8K2B5

Report Date: 2016/12/07

Report #: R2312848 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B6A0498 Received: 2016/11/09, 13:45

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity - Water (1)	2	2016/11/15	2016/11/15	BBY6SOP-00026	SM2320B
Chloride by Automated Colourimetry	2	N/A	2016/11/14	BBY6SOP-00011	SM 22 4500-Cl- E m
Conductance - water (1)	2	N/A	2016/11/15	BBY6SOP-00026	SM-2510B
Fluoride	2	N/A	2016/11/10	BBY6SOP-00048	SM 22 4500-F C m
Hardness Total (calculated as CaCO3)	1	N/A	2016/11/16	BBY WI-00033	Auto Calc
Hardness Total (calculated as CaCO3)	1	N/A	2016/11/17	BBY WI-00033	Auto Calc
Na, K, Ca, Mg, S by CRC ICPMS (total)	1	2016/11/14	2016/11/16	BBY7SOP-00002	EPA 6020A R1 m
Na, K, Ca, Mg, S by CRC ICPMS (total)	1	2016/11/14	2016/11/17	BBY7SOP-00002	EPA 6020A R1 m
Na, K, Ca, Mg, S by CRC ICPMS (total)	2	N/A	2016/11/14	BBY7SOP-00003,	BCLM2005,EPA6020bR2m
Elements by CRC ICPMS (total)	2	2016/11/14	2016/11/16	BBY7SOP-00003,	BCLM2005,EPA6020bR2m
Nitrate + Nitrite (N)	2	N/A	2016/11/10	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrite (N) by CFA	2	N/A	2016/11/10	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrogen - Nitrate (as N)	2	N/A	2016/11/12	BBY6SOP-00010	SM 22 4500-NO3 I m
pH Water (1, 2)	2	N/A	2016/11/15	BBY6SOP-00026	SM-4500H+B
Total Dissolved Solids (Filt. Residue) (1)	2	N/A	2016/11/16	VIC SOP-00008	Based on SM 2540C
Total Coliform & E.Coli by MF-Chromocult (1)	2	N/A	2016/11/09	VIC SOP 00112	Based on SM-9222
Total Phosphorus	2	N/A	2016/11/15	BBY6SOP-00013	SM 22 4500-P E m
Turbidity (1)	2	N/A	2016/11/10	VIC SOP-00011	Based on SM - 2130

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Your C.O.C. #: WI005071

Attention:ERIC BOOTH

SALT SPRING VENTURES INC.

Canada V8K2B5

Report Date: 2016/12/07

Report #: R2312848 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B6A0498 Received: 2016/11/09, 13:45

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Victoria
- (2) The BC-MOE and APHA Standard Method require pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the BC-MOE/APHA Standard Method holding time.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. BC Env Customer Service, BC Environmental Customer Service Email: Enviro.CS.BC@maxxam.ca Phone# (604) 734 7276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

SALT SPRING VENTURES INC.

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID					PZ6667	PZ6668		
Sampling Date					2016/11/09 09:30	2016/11/09 09:30		
COC Number					WI005071	WI005071		
	UNITS	MAC	AO	OG	POND - SSI VENTURES	SWANSON POND WELL - SSI VENTURES	RDL	QC Batch
ANIONS								
Nitrite (N)	mg/L	1	-	-	0.0073	0.0082	0.0050	8468561
Calculated Parameters	•			'				
Nitrate (N)	mg/L	10	-	-	0.107	<0.020	0.020	8464817
Misc. Inorganics	•						•	
Fluoride (F)	mg/L	1.5	-	-	0.055	0.170	0.010	8467849
Alkalinity (Total as CaCO	3) mg/L	-	-	-	41.6	100	0.5	8470821
Alkalinity (PP as CaCO3)	mg/L	-	-	-	<0.5	<0.5	0.5	8470821
Bicarbonate (HCO3)	mg/L	-	-	-	50.7	122	0.5	8470821
Carbonate (CO3)	mg/L	-	-	-	<0.5	<0.5	0.5	8470821
Hydroxide (OH)	mg/L	-	-	-	<0.5	<0.5	0.5	8470821
Anions								
Dissolved Chloride (Cl)	mg/L	-	250	-	9.3	13	0.50	8470232
Nutrients								
Nitrate plus Nitrite (N)	mg/L	-	-	-	0.115	<0.020	0.020	8468560
Total Phosphorus (P)	mg/L	-	-	-	0.0550	0.0889	0.0050	8471097
Physical Properties								
Conductivity	uS/cm	-	-	-	132	258	1	8470825
рН	рН	-	6.5:8.5	-	7.5	7.8		8470826
Physical Properties	•							
Total Dissolved Solids	mg/L	-	500	-	90	171	10	8469990
Turbidity	NTU	see remark	see remark	see remark	3.5	8.0	0.1	8469715
No Fill	No Exceeda	ince						
Grey	Exceeds 1 c	riteria policy,	/level					
Black	Exceeds bo	th criteria/lev	vels					
DDI Danastalia Datast								

RDL = Reportable Detection Limit

SALT SPRING VENTURES INC.

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID				PZ6667	PZ6668					
Sampling Date				2016/11/09	2016/11/09					
Sumpling Dute				09:30	09:30					
COC Number				WI005071	WI005071					
				POND - SSI	SWANSON POND					
	UNITS	MAC	AO	VENTURES	WELL - SSI	RDL	QC Batch			
				72.11.011.20	VENTURES					
Total Metals by ICPMS										
Total Arsenic (As)	ug/L	10	-	0.67	2.83	0.10	8469737			
Total Copper (Cu)	ug/L	-	1000	3.49	15.9	0.50	8469737			
Total Iron (Fe)	ug/L	-	300	265	2680	10	8469737			
Total Lead (Pb)	ug/L	10	-	0.46	5.88	0.20	8469737			
Total Manganese (Mn)	ug/L	-	50	44.4	713	1.0	8469737			
Total Zinc (Zn)	ug/L	-	5000	7.4	27.0	5.0	8469737			
Total Calcium (Ca)	mg/L	-	-	11.8	16.5	0.050	8469651			
Total Magnesium (Mg)	mg/L	-	-	3.69	3.48	0.050	8469651			
Total Potassium (K)	mg/L	-	-	1.74	0.850	0.050	8469651			
Total Sodium (Na)	mg/L	-	200	9.59	28.0	0.050	8469651			
Total Sulphur (S)	mg/L	-	-	3.2	<3.0	3.0	8469651			
No Fill No Exce	edance	•	•			•				
Grey Exceeds	1 criter	ia poli	cy/leve	I						
Black Exceeds both criteria/levels										
RDL = Reportable Detection I	imit									

SALT SPRING VENTURES INC.

MICROBIOLOGY (WATER)

Maxxam ID				PZ6667	PZ6668					
Sampling Date				2016/11/09 09:30	2016/11/09 09:30					
COC Number				WI005071	WI005071					
		UNITS	MAC	POND - SSI VENTURES	SWANSON POND WELL - SSI VENTURES	RDL	QC Batch			
Microbiological Pa	aram.									
Total Coliforms		CFU/100mL	<1	280	SEE NOTE (1)	1	8469681			
E. coli		CFU/100mL	<1	150	2	1	8469681			
No Fill	No Exce	edance			•		•			
Grey	Exceeds	1 criteria poli	cy/leve	el						
Black Exceeds both criteria/levels										
RDL = Reportable I	ı Detection L	imit								
(1) Due to conflue	nt growth c	on 3/4 of the p	olate a	calculated estimate of	>2100 is given.					

SALT SPRING VENTURES INC.

TOT. METALS W/ CV HG FOR DRINKING WATER (WATER)

Maxxam ID				PZ6667	PZ6668		
Sampling Date				2016/11/09 09:30	2016/11/09 09:30		
COC Number				WI005071	WI005071		
		TS	AO	POND - SSI VENTURES	SWANSON POND WELL - SSI VENTURES	RDL	QC Batch
Calculated Param	eters						
Total Hardness (Ca	aCO3) mg	/L	-	44.6	55.6	0.50	8465116
Total Metals by IC	PMS						
Total Calcium (Ca)	mg	/L	-	11.8	11.8 16.5		8464816
Total Magnesium	(Mg) mg	/L	-	3.69	3.48	0.050	8464816
Total Potassium (k	() mg	/L	-	1.74	0.850	0.050	8464816
Total Sodium (Na)	mg	/L 2	200	9.59	28.0	0.050	8464816
No Fill	No Exceedanc	e					
Grey Exceeds 1 criteria				cy/level			
Black Exceeds both criteria/levels							
RDL = Reportable	Detection Limit						

SALT SPRING VENTURES INC.

GENERAL COMMENTS

MAC,AO,OG: The guidelines that have been included in this report have been taken from the Canadian Drinking Water Quality Summary Table, October 2014.

Criteria A = Maximum Acceptable Concentration (MAC) / Criteria B = Aesthetic Objectives (AO) / Criteria C = Operational Guidance Values (OG) It is recommended to consult these guidelines when interpreting your data since there are non-numerical guidelines that are not included on this report.

Turbidity Guidelines:

- 1. Chemically assisted filtration: less than or equal to 0.3 NTU in 95% of the measurements or 95% of the time each month. Shall not exceed 1.0 NTU at any time.
- 2. Slow sand / diatomaceous earth filtration: less than or equal to 1.0 NTU in 95% of the measurements or 95% of the time each month. Shall not exceed 3.0 NTU at any time.
- 3. Membrane filtration: less than or equal to 0.1 NTU in 99% of the measurements made or at least 99% of the time each calendar month. Shall not exceed 0.3 NTU at any time.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

SALT SPRING VENTURES INC.

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8467849	Fluoride (F)	2016/11/10	109	80 - 120	106	80 - 120	0.014, RDL=0.010	mg/L	0	20
8468560	Nitrate plus Nitrite (N)	2016/11/10	103	80 - 120	109	80 - 120	<0.020	mg/L	NC	25
8468561	Nitrite (N)	2016/11/10	100	80 - 120	101	80 - 120	<0.0050	mg/L	NC	20
8469715	Turbidity	2016/11/10			98	80 - 120	<0.1	NTU	NC	20
8469737	Total Arsenic (As)	2016/11/16	97	80 - 120	99	80 - 120	<0.10	ug/L	4.8	20
8469737	Total Copper (Cu)	2016/11/16	NC	80 - 120	104	80 - 120	<0.50	ug/L	0.58	20
8469737	Total Iron (Fe)	2016/11/16	NC	80 - 120	102	80 - 120	<10	ug/L	3.8	20
8469737	Total Lead (Pb)	2016/11/16	NC	80 - 120	97	80 - 120	<0.20	ug/L	2.4	20
8469737	Total Manganese (Mn)	2016/11/16	NC	80 - 120	97	80 - 120	<1.0	ug/L	0.52	20
8469737	Total Zinc (Zn)	2016/11/16	NC	80 - 120	114	80 - 120	<5.0	ug/L	0.61	20
8469990	Total Dissolved Solids	2016/11/16			98	80 - 120	<10	mg/L	2.6	20
8470232	Dissolved Chloride (CI)	2016/11/14	97	80 - 120	107	80 - 120	0.58, RDL=0.50	mg/L	1.7	20
8470821	Alkalinity (PP as CaCO3)	2016/11/15	12	N/A			<0.5	mg/L		
8470821	Alkalinity (Total as CaCO3)	2016/11/15	NC	80 - 120	91	80 - 120	<0.5	mg/L		
8470821	Bicarbonate (HCO3)	2016/11/15					<0.5	mg/L		
8470821	Carbonate (CO3)	2016/11/15					<0.5	mg/L		
8470821	Hydroxide (OH)	2016/11/15					<0.5	mg/L		
8470825	Conductivity	2016/11/15			102	90 - 110	<1	uS/cm		
8470826	рН	2016/11/15			101	96 - 104				
8471097	Total Phosphorus (P)	2016/11/15	102	80 - 120	97	80 - 120	<0.0050	mg/L	NC	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

SALT SPRING VENTURES INC.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

David Nadler, AASc, Victoria Operations Manager

Rob Reinert, B.Sc., Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your C.O.C. #: WI005311

Attention:Al Kohut

Hy-Geo Consulting 1041 Laburnum Rd Victoria, BC Canada V8Z 2M9

Report Date: 2017/02/03

Report #: R2341448 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B704971 Received: 2017/01/23, 15:22

Sample Matrix: DRINKING WATER

Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity - Water (1)	1	2017/01/25	2017/01/24	BBY6SOP-00026	SM2320B
Chloride by Automated Colourimetry	1	N/A	2017/01/26	BBY6SOP-00011	SM 22 4500-Cl- E m
True Colour (Single Wavelength) (1)	1	N/A	2017/01/26	VIC SOP-00010	Based on SM-2120 C
Conductance - water (1)	1	N/A	2017/01/24	BBY6SOP-00026	SM-2510B
Fluoride	1	N/A	2017/01/26	BBY6SOP-00048	SM 22 4500-F C m
Iron Bacteria (1)	1	N/A	2017/01/24	VIC SOP-00114	SM 22 9240 m
Hardness Total (calculated as CaCO3)	1	N/A	2017/01/30	BBY WI-00033	Auto Calc
Mercury (Total) by CVAF	1	2017/01/27	2017/01/27	BBY7SOP-00015	BCMOE BCLM Oct2013 m
Heterotropic Plate Count Water Mem. Filt (1)	1	N/A	2017/01/24	BBY4 SOP-00003	Based on SM-9215
Na, K, Ca, Mg, S by CRC ICPMS (total)	1	N/A	2017/01/30	BBY7SOP-00003,	BCLM2005,EPA6020bR2m
Elements by CRC ICPMS (total)	1	N/A	2017/01/27	BBY7SOP-00003,	BCLM2005,EPA6020bR2m
Nitrogen (Total)	1	2017/01/26	2017/01/26	BBY6SOP-00016	SM 22 4500-N C m
Ammonia-N (Preserved)	1	N/A	2017/01/26	BBY6SOP-00009	SM 22 4500-NH3- G m
Nitrate + Nitrite (N)	1	N/A	2017/01/26	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrite (N) by CFA	1	N/A	2017/01/26	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrogen - Nitrate (as N)	1	N/A	2017/01/27	BBY6SOP-00010	SM 22 4500-NO3 I m
Nitrogen (Organic) (Cal. TKN, NH4,N/N)	1	N/A	2017/01/27	BBY WI-00033	Auto Calc
pH Water (1, 2)	1	N/A	2017/01/24	BBY6SOP-00026	SM-4500H+B
Sat. pH and Langelier Index (@ 4.4C)	1	N/A	2017/01/30	BBY WI-00033	Auto Calc
Sat. pH and Langelier Index (@ 60C)	1	N/A	2017/01/30	BBY WI-00033	Auto Calc
Sulphate by Automated Colourimetry	1	N/A	2017/01/26	BBY6SOP-00017	SM 22 4500-SO42- E m
Sulphate Reducing Bacteria (1)	1	N/A	2017/01/24	VIC SOP-00114	SM 22 9240 m
Sulphide - total	1	N/A	2017/01/27	BBY6SOP-00006	SM 22 4500-S2- D m
Total Dissolved Solids (Filt. Residue) (1)	1	N/A	2017/01/26	VIC SOP-00008	Based on SM 2540C
Total Coliform & E.Coli by MF-Chromocult (1)	1	N/A	2017/01/24	VIC SOP 00112	Based on SM-9222
Carbon (Total Organic) (3)	1	N/A	2017/01/25	BBY6SOP-00003	SM 22 5310 C m
Turbidity (1)	1	N/A	2017/01/26	VIC SOP-00011	Based on SM - 2130

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

Your C.O.C. #: WI005311

Attention:Al Kohut

Hy-Geo Consulting 1041 Laburnum Rd Victoria, BC Canada V8Z 2M9

Report Date: 2017/02/03

Report #: R2341448 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B704971 Received: 2017/01/23, 15:22

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- st RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Victoria
- (2) The BC-MOE and APHA Standard Method require pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the BC-MOE/APHA Standard Method holding time.
- (3) TOC present in the sample should be considered as non-purgeable TOC.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. BC Env Customer Service, BC Environmental Customer Service

Email: Enviro.CS.BC@maxxam.ca

Phone# (604) 734 7276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Hy-Geo Consulting

RESULTS OF CHEMICAL ANALYSES OF DRINKING WATER

Maxxam ID					QL0842		
Sampling Date					2017/01/23 10:55		
COC Number					WI005311		
	UNITS	MAC	AO	OG	BOOTH WELL	RDL	QC Batch
ANIONS							
Nitrite (N)	mg/L	1	-	-	<0.0050	0.0050	8538253
Calculated Parameters	•	I.		I.			
Total Hardness (CaCO3)	mg/L	-	-	-	43.7	0.50	8535384
Nitrate (N)	mg/L	10	-	-	<0.020	0.020	8535389
Misc. Inorganics	*						
Fluoride (F)	mg/L	1.5	-	-	0.190	0.010	8539279
Alkalinity (Total as CaCO3)	mg/L	-	-	-	111	0.5	8536171
Total Organic Carbon (C)	mg/L	-	-	-	4.66	0.50	8536972
Alkalinity (PP as CaCO3)	mg/L	-	-	-	<0.5	0.5	8536171
Bicarbonate (HCO3)	mg/L	-	-	-	136	0.5	8536171
Carbonate (CO3)	mg/L	-	-	-	<0.5	0.5	8536171
Hydroxide (OH)	mg/L	-	-	-	<0.5	0.5	8536171
Anions			•				
Dissolved Sulphate (SO4)	mg/L	-	500	-	39.6	0.50	8538793
Dissolved Chloride (Cl)	mg/L	-	250	-	67	0.50	8538788
MISCELLANEOUS	•						
True Colour	Col. Unit	-	15	-	32	5	8541901
Nutrients			•				
Total Organic Nitrogen (N)	mg/L	-	-	-	0.324	0.020	8535703
Total Ammonia (N)	mg/L	-	-	-	0.13	0.0050	8537541
Nitrate plus Nitrite (N)	mg/L	-	-	-	<0.020	0.020	8538251
Total Nitrogen (N)	mg/L	-	-	-	0.458	0.020	8538085
Physical Properties	•						
Conductivity	uS/cm	-	-	-	545	1	8535426
рН	рН	-	6.5:8.5	-	7.8		8535425
Physical Properties							
Total Dissolved Solids	mg/L	-	500	-	310	10	8536532
Turbidity	NTU	see remark	see remark	see remark	3.1	0.1	8538589
No Fill No Exce	edance						
Grey Exceeds	1 criteria p	oolicy/level					
•	both crite						
RDL = Reportable Detection							

Hy-Geo Consulting

MERCURY BY COLD VAPOR (DRINKING WATER)

Maxxam ID				QL0842				
Sampling Date				2017/01/23 10:55				
COC Number				WI005311				
		UNITS	MAC	BOOTH WELL	RDL	QC Batch		
Elements								
Total Mercu	ıry (Hg)	ug/L	1	<0.010	0.010	8538410		
No Fill	No Exceedance	9						
Grey	Exceeds 1 crite	Exceeds 1 criteria policy/level						
Black	Exceeds both o	Exceeds both criteria/levels						
RDL = Repo	rtable Detection L	imit						

ELEMENTS BY ATOMIC SPECTROSCOPY (DRINKING WATER)

Maxxam ID					QL0842				
Sampling Date					2017/01/23				
COC Number					10:55 WI005311				
COC Number	LINUTC	NAAC	40	00		DDI	OC Batab		
	UNITS	IVIAC	AO	OG	BOOTH WELL	RDL	QC Batch		
Total Metals by ICPMS	1				T	1			
Total Aluminum (Al)	ug/L	-	-	100	161	3.0	8538139		
Total Antimony (Sb)	ug/L	6	-	-	<0.50	0.50	8538139		
Total Arsenic (As)	ug/L	10	-	-	6.62	0.10	8538139		
Total Barium (Ba)	ug/L	1000	-	-	19.1	1.0	8538139		
Total Beryllium (Be)	ug/L	-	-	-	<0.10	0.10	8538139		
Total Bismuth (Bi)	ug/L	-	-	-	<1.0	1.0	8538139		
Total Boron (B)	ug/L	5000	-	-	58	50	8538139		
Total Cadmium (Cd)	ug/L	5	-	-	0.010	0.010	8538139		
Total Chromium (Cr)	ug/L	50	-	-	<1.0	1.0	8538139		
Total Cobalt (Co)	ug/L	-	-	-	<0.50	0.50	8538139		
Total Copper (Cu)	ug/L	-	1000	-	1.58	0.20	8538139		
Total Iron (Fe)	ug/L	-	300	-	697	5.0	8538139		
Total Lead (Pb)	ug/L	10	-	-	0.21	0.20	8538139		
Total Manganese (Mn)	ug/L	-	50	-	372	1.0	8538139		
Total Molybdenum (Mo)	ug/L	-	-	-	<1.0	1.0	8538139		
Total Nickel (Ni)	ug/L	-	-	-	<1.0	1.0	8538139		
Total Selenium (Se)	ug/L	50	-	-	<0.10	0.10	8538139		
Total Silicon (Si)	ug/L	-	-	-	6970	100	8538139		
Total Silver (Ag)	ug/L	-	-	-	<0.020	0.020	8538139		
Total Strontium (Sr)	ug/L	-	-	-	332	1.0	8538139		
Total Thallium (TI)	ug/L	-	-	-	<0.010	0.010	8538139		
Total Tin (Sn)	ug/L	-	-	-	<5.0	5.0	8538139		
Total Titanium (Ti)	ug/L	-	-	-	7.2	5.0	8538139		
Total Uranium (U)	ug/L	20	-	-	<0.10	0.10	8538139		
Total Vanadium (V)	ug/L	-	-	-	<5.0	5.0	8538139		
Total Zinc (Zn)	ug/L	-	5000	-	<5.0	5.0	8538139		
Total Zirconium (Zr)	ug/L	-	-	-	<0.50	0.50	8538139		
Total Calcium (Ca)	mg/L	-	-	-	13.3	0.050	8535701		
Total Magnesium (Mg)	mg/L	-	-	-	2.51	0.050	8535701		
Total Potassium (K)	mg/L	-	-	-	0.730	0.050	8535701		
Total Sodium (Na)	mg/L	-	200	-	100	0.050	8535701		
Total Sulphur (S)	mg/L	-	-	-	14.6	3.0	8535701		
No Fill No Exceedar		<u>I</u>		<u> </u>	1				
Grey Exceeds 1 cr		licy/le	vel						
•	•	•							
Black Exceeds both		a/ievel:	5						
RDL = Reportable Detection Limit									

Page 5 of 13

Hy-Geo Consulting

MICROBIOLOGY (DRINKING WATER)

		-		-					
Maxxam ID				QL0842					
Sampling Dat	t-0			2017/01/23					
Sampling Dat	ie			10:55					
COC Number				WI005311					
		UNITS	MAC	BOOTH WELL	RDL	QC Batch			
Microbiological Param.									
Heterotrophic Plate Count		CFU/mL	-	32	1	8541898			
Iron Bacteria	CFU/mL	-	35000	25	8544731				
Sulphate redu	ucing bacteria	CFU/mL	-	120000	75	8544725			
Total Coliforn	ns	CFU/100mL	<1	*SEE NOTE (1)	1	8537378			
E. coli		CFU/100mL	<1	1 2		8537378			
No Fill	No Exceedan	No Exceedance							
Grey	Exceeds 1 criteria policy/level								
Black	Exceeds both criteria/levels								

RDL = Reportable Detection Limit

(1) Due to confluent growth a calculated estimate of 480 CFU/100mL was determined

Hy-Geo Consulting

CALCULATED PARAMETERS (DRINKING WATER)

Maxxam ID		QL0842	
Sampling Date		2017/01/23 10:55	
COC Number		WI005311	
	UNITS	BOOTH WELL	QC Batch
Parameter			
Langelier Index (@ 4.4C)	N/A	-0.996	8535705
Langelier Index (@ 60C)	N/A	0.0450	8535707
Saturation pH (@ 4.4C)	N/A	8.78	8535705
Saturation pH (@ 60C)	N/A	7.74	8535707

Hy-Geo Consulting

MISCELLANEOUS (DRINKING WATER)

Maxxam ID				QL0842			
Sampling Da	te			2017/01/23 10:55			
COC Number				WI005311			
		UNITS	AO	BOOTH WELL	RDL	QC Batch	
MISCELLANEOUS							
Total Sulphic	de	mg/L	0.05	0.107 (1)	0.0050	8538765	
No Fill	No Exceedance	9	=	•			
Grey	Exceeds 1 crite	ria polic	cy/lev	el			
Black	Exceeds both criteria/levels						
RDL = Repor	RDL = Reportable Detection Limit						
(1) Sample re	eceived at less th	an recor	nmen	ded preservation	on pH 9.		

Hy-Geo Consulting

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	10.0°C
U	

MAC,AO,OG: The guidelines that have been included in this report have been taken from the Canadian Drinking Water Quality Summary Table, October 2014.

Criteria A = Maximum Acceptable Concentration (MAC) / Criteria B = Aesthetic Objectives (AO) / Criteria C = Operational Guidance Values (OG) It is recommended to consult these guidelines when interpreting your data since there are non-numerical guidelines that are not included on this report.

Turbidity Guidelines:

- 1. Chemically assisted filtration: less than or equal to 0.3 NTU in 95% of the measurements or 95% of the time each month. Shall not exceed 1.0 NTU at any time.
- 2. Slow sand / diatomaceous earth filtration: less than or equal to 1.0 NTU in 95% of the measurements or 95% of the time each month. Shall not exceed 3.0 NTU at any time.
- 3. Membrane filtration: less than or equal to 0.1 NTU in 99% of the measurements made or at least 99% of the time each calendar month. Shall not exceed 0.3 NTU at any time.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Hy-Geo Consulting

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8535425	рН	2017/01/24			101	96 - 104			0	N/A
8535426	Conductivity	2017/01/24			103	90 - 110	2,RDL=1	uS/cm	1.3	20
8536171	Alkalinity (PP as CaCO3)	2017/01/24					<0.5	mg/L	NC	20
8536171	Alkalinity (Total as CaCO3)	2017/01/24	NC	80 - 120	91	80 - 120	0.6, RDL=0.5	mg/L	2.4	20
8536171	Bicarbonate (HCO3)	2017/01/24					0.7, RDL=0.5	mg/L	2.4	20
8536171	Carbonate (CO3)	2017/01/24					<0.5	mg/L	NC	20
8536171	Hydroxide (OH)	2017/01/24					<0.5	mg/L	NC	20
8536532	Total Dissolved Solids	2017/01/26			90	80 - 120	<10	mg/L	0.58	20
8536972	Total Organic Carbon (C)	2017/01/25	118	80 - 120	103	80 - 120	<0.50	mg/L	NC	20
8537378	E. coli	2017/01/24							NC	N/A
8537378	Total Coliforms	2017/01/24							NC	N/A
8537541	Total Ammonia (N)	2017/01/26	100	80 - 120	103	80 - 120	<0.0050	mg/L	0.86	20
8538085	Total Nitrogen (N)	2017/01/26	NC	80 - 120	101	80 - 120	<0.020	mg/L	1.4	20
8538139	Total Aluminum (Al)	2017/01/27	109	80 - 120	111	80 - 120	<3.0	ug/L		
8538139	Total Antimony (Sb)	2017/01/27	99	80 - 120	98	80 - 120	<0.50	ug/L		
8538139	Total Arsenic (As)	2017/01/27	106	80 - 120	103	80 - 120	<0.10	ug/L	NC	20
8538139	Total Barium (Ba)	2017/01/27	NC	80 - 120	96	80 - 120	<1.0	ug/L	7.2	20
8538139	Total Beryllium (Be)	2017/01/27	101	80 - 120	98	80 - 120	<0.10	ug/L		
8538139	Total Bismuth (Bi)	2017/01/27	99	80 - 120	100	80 - 120	<1.0	ug/L		
8538139	Total Boron (B)	2017/01/27	104	80 - 120	112	80 - 120	<50	ug/L	NC	20
8538139	Total Cadmium (Cd)	2017/01/27	101	80 - 120	98	80 - 120	<0.010	ug/L	NC	20
8538139	Total Chromium (Cr)	2017/01/27	98	80 - 120	101	80 - 120	<1.0	ug/L	NC	20
8538139	Total Cobalt (Co)	2017/01/27	97	80 - 120	100	80 - 120	<0.50	ug/L		
8538139	Total Copper (Cu)	2017/01/27	NC	80 - 120	99	80 - 120	<0.20	ug/L	4.1	20
8538139	Total Iron (Fe)	2017/01/27	94	80 - 120	103	80 - 120	<5.0	ug/L		
8538139	Total Lead (Pb)	2017/01/27	98	80 - 120	98	80 - 120	<0.20	ug/L	NC	20
8538139	Total Manganese (Mn)	2017/01/27	99	80 - 120	101	80 - 120	<1.0	ug/L	NC	20
8538139	Total Molybdenum (Mo)	2017/01/27	NC	80 - 120	102	80 - 120	<1.0	ug/L		
8538139	Total Nickel (Ni)	2017/01/27	96	80 - 120	100	80 - 120	<1.0	ug/L		
8538139	Total Selenium (Se)	2017/01/27	102	80 - 120	102	80 - 120	<0.10	ug/L	NC	20
8538139	Total Silicon (Si)	2017/01/27					<100	ug/L		
8538139	Total Silver (Ag)	2017/01/27	102	80 - 120	107	80 - 120	<0.020	ug/L		

QUALITY ASSURANCE REPORT(CONT'D)

Hy-Geo Consulting

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8538139	Total Strontium (Sr)	2017/01/27	NC	80 - 120	98	80 - 120	<1.0	ug/L		
8538139	Total Thallium (TI)	2017/01/27	100	80 - 120	99	80 - 120	<0.010	ug/L		
8538139	Total Tin (Sn)	2017/01/27	100	80 - 120	102	80 - 120	<5.0	ug/L		
8538139	Total Titanium (Ti)	2017/01/27	97	80 - 120	98	80 - 120	<5.0	ug/L		
8538139	Total Uranium (U)	2017/01/27	98	80 - 120	97	80 - 120	<0.10	ug/L	NC	20
8538139	Total Vanadium (V)	2017/01/27	98	80 - 120	97	80 - 120	<5.0	ug/L		
8538139	Total Zinc (Zn)	2017/01/27	NC	80 - 120	102	80 - 120	<5.0	ug/L	NC	20
8538139	Total Zirconium (Zr)	2017/01/27					<0.50	ug/L		
8538251	Nitrate plus Nitrite (N)	2017/01/26	106	80 - 120	104	80 - 120	<0.020	mg/L	0.088	25
8538253	Nitrite (N)	2017/01/26	96	80 - 120	95	80 - 120	<0.0050	mg/L	NC	20
8538410	Total Mercury (Hg)	2017/01/27	86	80 - 120	96	80 - 120	<0.010	ug/L	NC	20
8538589	Turbidity	2017/01/26			99	80 - 120	<0.1	NTU	6.3	20
8538765	Total Sulphide	2017/01/27	101	80 - 120	103	80 - 120	<0.0050	mg/L	NC	20
8538788	Dissolved Chloride (CI)	2017/01/26			97	80 - 120	<0.50	mg/L	NC	20
8538793	Dissolved Sulphate (SO4)	2017/01/26	NC	80 - 120	97	80 - 120	<0.50	mg/L	1.3	20
8539279	Fluoride (F)	2017/01/26	96	80 - 120	96	80 - 120	<0.010	mg/L	NC	20
8541898	Heterotrophic Plate Count	2017/01/24							3.2	N/A
8541901	True Colour	2017/01/26			86	80 - 120	<5	Col. Unit	3.1	10
8544725	Sulphate reducing bacteria	2017/01/24							0	N/A
8544731	Iron Bacteria	2017/01/24							0	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Due to confluent growth a calculated estimate of 440 CFU/100mL was determined

Hy-Geo Consulting

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

David Nadler, AASc, Victoria Operations Manager

Rob Reinert, B.Sc., Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Victoria: 460 Tennyson Place, Unit 1, Victoria, BC V8Z 688 Ph; (250) 385-6112 Toll Free; (866) 385-6112 Courtenay; 2755 B Moray Ave, Courtenay, BC V9N 8M9 Ph; (250) 338-7766 Toll Free; (800) 665-8566

WILLIAM CONSULTING		Maxxam Job #: 376497								
Contact Name: AL KOHVT	If your drinking water source services two out how the Drinking Water Protection Act report results directly to local health author	or more homes, we strongly recommend that you contact local health authorities to find applies to this system. Please be aware that, in this situation, we are legally obligated to								
Mailing Address: 104/1 LABURNUM RD	All information on this form must b	All information on this form must be completed before testing can commence								
VICTORIA, BC V8Z2M Phone #: 250 744 7859	Please note your invoice may be subject to a \$60 minimum bill.	Sample Collection For determining drinking water quality, samples should be representative of the water that will be consumed; therefore, we suggest sampling at the kitchen tap. However, other sampling locations may be								
E-mail apkohut a telus.	net Payment Received: Yes No [used to determine pre-treatment water quality or for troubleshooting purposes. 1. Remove aerator/screen from faucet.								
After Hours Contact #: 250 477 34/6 Regular Turnaround Time (TAT) RUSH Please of Surcharges will Date Required:	PLEASE CIRCLE ANALYSIS REQUESTED PLEASE SELECT BELO	2. Let the water run for 6 minutes. 3. Label the bottle with your name, date and time you are taking the sample. 4. Fill all bottle(s) provided. Take care not to touch the inside of the bottle or underside of cap. 5. Cap the sample and place it in fridge or small cooler with icepack. Remember: It is important that you do not contaminate the sample as you handle the container. Wash your hands before you start and be careful not to touch the rim of the bottle								
SPECIAL INSTRUCTIONS: Return Cooler Ship Sample Bottles (please specify) Lab Use Only Sample Identification (Sample Location & Lab Location (Sample Location & Lab Location (Sample Location & Lab Location (Sample Location)	from a Drinking Warree supply multiple induals drinking this on a boil water advis Water Scan W.H. fety Scan including Harrist Scan including Harrist Item and E. Coll	or the inside of the cap. DON'T: Don't rinse or boil any bottle you receive from the lab. Don't let the sample sit out overnight, please refrigerate. Don't freeze the sample. Sample Transportation & Delivery 1. Samples should arrive at the laboratories (Courlenay or Victoria) within 24 hrs of sampling. Ship.								
Welkhead)	Date/Lime Samples Samples Samples (24hr) Outhking Home Samples Sample	Samples should arrive at the laboratories (Courtenay or Victoria) within 24 hrs of sampling. Ship samples between Monday and Thursday to avoid lab scheduling conflicts.								
1 BOOTH WELL WELL	2017/1/23 V V V V V J J J J J J J J J J J J J J	X The sample should be kept cool during transit (<10°C - refrigerated or packed on ice).								
3	N N N N Y Y Y Y	3. Fill out the Chain of Custody (COC) form beside these instructions and submit with the sample. Incomplete or missing COC's will result in delays impacting turnaround time and the lab's ability to proceed with time sensitive tests.								
Mary and the second	N N N N N N N N N N N N N N N N N N N	Delivery Options: Personally deliver samples to Courteney or Victoria								
A common and a com	NNNN	Overnight shipping: If you ship a sample on the same day that it was collected you can use an								
5	Y Y Y Y N N N N	overnight courier. Same day shipping: Available from Ken's Transfer, Ace Courier, and Greyhound (Courtenay only). Please contact the lab for details.								
Print name and sign	Print penis and sign	About high Page 1997 and 1997								
Religious Add By: 1 Date (yylmm/dd): Time (24 hr 4.1. [Attention 2017/01/23] 15 2 0): Received by : Date (yy/mm/d	d): Time (24hr): Time Temperature on Receipt (°C) Custody Seal Yes No. N/A								
101 Jell 15 28	SHUNDAGRAY 17/01/2	23 15:22 Sensitive A) 10 B) (0 C) 10 Present?								

For further information and resources on result interpretation, please visit our Drinking Water Resource Center: http://maxxam.ca/maxxams-resource-centre-for-drinking-water-testing

BBY FCD-00189/1

Your C.O.C. #: WI009327

Attention:Al Kohut

Hy-Geo Consulting 1041 Laburnum Rd Victoria, BC Canada V8Z 2M9

Report Date: 2017/05/26

Report #: R2388423 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B737909 Received: 2017/05/17, 12:58

Sample Matrix: DRINKING WATER

Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity - Water (1)	1	2017/05/18	2017/05/18	BBY6SOP-00026	SM2320B
Chloride by Automated Colourimetry	1	N/A	2017/05/19	BBY6SOP-00011	SM 22 4500-Cl- E m
True Colour (Single Wavelength) (1)	1	N/A	2017/05/19	VIC SOP-00010	SM 22 2120 C m
Conductance - water (1)	1	N/A	2017/05/18	BBY6SOP-00026	SM-2510B
Fluoride	1	N/A	2017/05/23	BBY6SOP-00048	SM 22 4500-F C m
Hardness Total (calculated as CaCO3)	1	N/A	2017/05/26	BBY WI-00033	Auto Calc
Mercury (Total) by CVAF	1	2017/05/24	2017/05/24	BBY7SOP-00015	BCMOE BCLM Oct2013 m
Na, K, Ca, Mg, S by CRC ICPMS (total)	1	N/A	2017/05/26	BBY7SOP-00003,	BCLM2005,EPA6020bR2m
Elements by CRC ICPMS (total)	1	N/A	2017/05/23	BBY7SOP-00003,	BCLM2005,EPA6020bR2m
Nitrate + Nitrite (N)	1	N/A	2017/05/19	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrite (N) by CFA	1	N/A	2017/05/19	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrogen - Nitrate (as N)	1	N/A	2017/05/24	BBY6SOP-00010	SM 22 4500-NO3 I m
pH Water (1, 2)	1	N/A	2017/05/18	BBY6SOP-00026	SM-4500H+B
Sulphate by Automated Colourimetry	1	N/A	2017/05/19	BBY6SOP-00017	SM 22 4500-SO42- E m
Total Dissolved Solids (Filt. Residue) (1)	1	N/A	2017/05/26	VIC SOP-00008	Based on SM 2540C
Total Coliform & E.Coli by MF-Chromocult (1)	1	N/A	2017/05/18	VIC SOP 00112	Based on SM-9222
Turbidity (1)	1	N/A	2017/05/20	VIC SOP-00011	SM 22 2130B m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope

Your C.O.C. #: WI009327

Attention:Al Kohut

Hy-Geo Consulting 1041 Laburnum Rd Victoria, BC Canada V8Z 2M9

Report Date: 2017/05/26

Report #: R2388423 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B737909 Received: 2017/05/17, 12:58

dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Victoria
- (2) The BC-MOE and APHA Standard Method require pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the BC-MOE/APHA Standard Method holding time.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. BC Env Customer Service, BC Environmental Customer Service Email: Enviro.CS.BC@maxxam.ca
Phone# (604) 734 7276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Hy-Geo Consulting

RESULTS OF CHEMICAL ANALYSES OF DRINKING WATER

Maxxam ID					RB8156		
Sampling Date					2017/05/17		
Jamping Date					10:10		
COC Number					WI009327		
	UNITS	MAC	AO	OG	WELL S.S. BOOTH PROJECT	RDL	QC Batch
ANIONS							
Nitrite (N)	mg/L	1	-	-	<0.0050	0.0050	8636709
Calculated Parameters	-			•		*	•
Nitrate (N)	mg/L	10	-	-	<0.020	0.020	8632554
Misc. Inorganics		•		•		•	
Fluoride (F)	mg/L	1.5	-	-	0.190	0.010	8637248
Alkalinity (Total as CaCO3)	mg/L	-	-	-	115	0.5	8633657
Alkalinity (PP as CaCO3)	mg/L	-	-	-	<0.5	0.5	8633657
Bicarbonate (HCO3)	mg/L	-	-	-	141	0.5	8633657
Carbonate (CO3)	mg/L	-	-	-	<0.5	0.5	8633657
Hydroxide (OH)	mg/L	-	-	-	<0.5	0.5	8633657
Anions						-	
Dissolved Sulphate (SO4)	mg/L	-	500	-	32.1	0.50	8637621
Dissolved Chloride (CI)	mg/L	-	250	-	54	0.50	8637618
MISCELLANEOUS							
True Colour	Col. Unit	-	15	-	38	5	8638502
Nutrients							
Nitrate plus Nitrite (N)	mg/L	-	-	-	<0.020	0.020	8636708
Physical Properties							
Conductivity	uS/cm	-	-	-	493	1	8633659
рН	рН	-	7.0:10.5	-	7.4		8633658
Physical Properties							
Total Dissolved Solids	mg/L	-	500	-	282	10	8640667
Turbidity	NTU	see remark	see remark	see remark	3.9	0.1	8638482
No Fill No E	xceedance					•	
Grey Exce	eds 1 criteri	a policy/leve					
Black Exce	eds both cri	teria/levels					
RDL = Reportable Detection	n Limit						
•							

Page 3 of 11

Hy-Geo Consulting

MICROBIOLOGY (DRINKING WATER)

Maxxam ID			RB8156						
Sampling Date				2017/05/17					
				10:10					
COC Number			WI009327						
		UNITS	MAC	MAC WELL S.S. BOOTH QC Ba					
Microbiologic	al Param.								
Total Coliform	ıs	CFU/100mL	0	230	8636156				
E. coli		CFU/100mL	0	8.0	8636156				
No Fill	No Exceedar	No Exceedance							
Grey	Exceeds 1 cr	Exceeds 1 criteria policy/level							
Black	Exceeds both criteria/levels								

Hy-Geo Consulting

TOT. METALS W/ CV HG FOR DRINKING WATER (DRINKING WATER)

Maxxam ID					RB8156		
Canada Bata					2017/05/17		
Sampling Date					10:10		
COC Number					WI009327		
	UNITS	MAC	АО	og	WELL S.S. BOOTH PROJECT	RDL	QC Batch
Calculated Parame	eters						
Total Hardness (Ca	CO3) mg/L	-	-	-	42.4	0.50	8633134
Elements							
Total Mercury (Hg)	ug/L	1	-	-	<0.010	0.010	8639166
Total Metals by IC	PMS					,	
Total Aluminum (A	l) ug/L	-	-	100	125	3.0	8638317
Total Antimony (Sb	o) ug/L	6	-	-	<0.50	0.50	8638317
Total Arsenic (As)	ug/L	10	-	-	5.31	0.10	8638317
Total Barium (Ba)	ug/L	1000	-	-	15.7	1.0	8638317
Total Beryllium (Be	e) ug/L	-	-	-	<0.10	0.10	8638317
Total Bismuth (Bi)	ug/L	-	-	-	<1.0	1.0	8638317
Total Boron (B)	ug/L	5000	-	-	53	50	8638317
Total Cadmium (Co		5	-	-	<0.010	0.010	8638317
Total Chromium (C		50	-	-	<1.0	1.0	8638317
Total Cobalt (Co)	ug/L	-	-	-	<0.20	0.20	8638317
Total Copper (Cu)	ug/L	-	1000	-	1.27	0.20	8638317
Total Iron (Fe)	ug/L	-	300	-	813	5.0	8638317
Total Lead (Pb)	ug/L	10	-	-	0.27	0.20	8638317
Total Manganese (-	50	-	319	1.0	8638317
Total Molybdenum		-	-	-	<1.0	1.0	8638317
Total Nickel (Ni)	ug/L	-	-	-	<1.0	1.0	8638317
Total Selenium (Se		50	-	-	<0.10	0.10	8638317
Total Silicon (Si)	ug/L	-	-	-	5890	100	8638317
Total Silver (Ag)	ug/L	-	-	-	<0.020	0.020	8638317
Total Strontium (Sr		-	-	-	293	1.0	8638317
Total Thallium (TI)	ug/L	-	-	-	<0.010	0.010	8638317
Total Tin (Sn)	ug/L	-	-	-	<5.0	5.0	8638317
Total Titanium (Ti)	ug/L	-	-	-	5.3	5.0	8638317
Total Uranium (U)	ug/L	20	-	-	<0.10	0.10	8638317
Total Vanadium (V		-	-	-	<5.0	5.0	8638317
Total Zinc (Zn)	ug/L	-	5000	-	<5.0	5.0	8638317
Total Zirconium (Zr		-	-	-	0.14	0.10	8638317
Total Calcium (Ca)	mg/L	-	-	-	12.9	0.050	8632754
Total Magnesium (-	-	-	2.44	0.050	8632754
No Fill	No Exceedance					1	
Grey	Exceeds 1 criteria	policy/	level				
,	Exceeds both crite						
RDL = Reportable [
Upr - vehougable r	Detection Littli						

Hy-Geo Consulting

TOT. METALS W/ CV HG FOR DRINKING WATER (DRINKING WATER)

Maxxam ID					RB8156		
Sampling Date					2017/05/17 10:10		
COC Number					WI009327		
	UNITS	MAC	АО	og	WELL S.S. BOOTH PROJECT	RDL	QC Batch
Total Potassium (K)	mg/L	-	-	-	0.799	0.050	8632754
Total Sodium (Na)	mg/L	-	200	-	86.2	0.050	8632754
Total Sulphur (S)	mg/L	-	-	1	13.5	3.0	8632754

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

Hy-Geo Consulting

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	11.3°C
-----------	--------

MAC,AO,OG: The guidelines that have been included in this report have been taken from the Canadian Drinking Water Quality Summary Table, February 2017.

Criteria A = Maximum Acceptable Concentration (MAC) / Criteria B = Aesthetic Objectives (AO) / Criteria C = Operational Guidance Values (OG) It is recommended to consult these guidelines when interpreting your data since there are non-numerical guidelines that are not included on this report.

Turbidity Guidelines:

- 1. Chemically assisted filtration: less than or equal to 0.3 NTU in 95% of the measurements or 95% of the time each month. Shall not exceed 1.0 NTU at any time.
- 2. Slow sand / diatomaceous earth filtration: less than or equal to 1.0 NTU in 95% of the measurements or 95% of the time each month. Shall not exceed 3.0 NTU at any time.
- 3. Membrane filtration: less than or equal to 0.1 NTU in 99% of the measurements made or at least 99% of the time each calendar month. Shall not exceed 0.3 NTU at any time.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Hy-Geo Consulting

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8633657	Alkalinity (PP as CaCO3)	2017/05/18					<0.5	mg/L	NC	20
8633657	Alkalinity (Total as CaCO3)	2017/05/18	105	80 - 120	85	80 - 120	<0.5	mg/L	6.1	20
8633657	Bicarbonate (HCO3)	2017/05/18					<0.5	mg/L	6.1	20
8633657	Carbonate (CO3)	2017/05/18					<0.5	mg/L	NC	20
8633657	Hydroxide (OH)	2017/05/18					<0.5	mg/L	NC	20
8633658	рН	2017/05/18			99	96 - 104				
8633659	Conductivity	2017/05/18			103	90 - 110	1,RDL=1	uS/cm		
8636156	E. coli	2017/05/18							NC	N/A
8636156	Total Coliforms	2017/05/18							NC	N/A
8636708	Nitrate plus Nitrite (N)	2017/05/19	103	80 - 120	108	80 - 120	<0.020	mg/L	NC	25
8636709	Nitrite (N)	2017/05/19	101	80 - 120	106	80 - 120	<0.0050	mg/L	NC	20
8637248	Fluoride (F)	2017/05/23	106	80 - 120	102	80 - 120	<0.010	mg/L	17	20
8637618	Dissolved Chloride (CI)	2017/05/19	NC	80 - 120	98	80 - 120	<0.50	mg/L	0.032	20
8637621	Dissolved Sulphate (SO4)	2017/05/19	NC	80 - 120	98	80 - 120	<0.50	mg/L	0.32	20
8638317	Total Aluminum (AI)	2017/05/23	114	80 - 120	117	80 - 120	<3.0	ug/L	NC	20
8638317	Total Antimony (Sb)	2017/05/23	102	80 - 120	100	80 - 120	<0.50	ug/L	NC	20
8638317	Total Arsenic (As)	2017/05/23	104	80 - 120	102	80 - 120	<0.10	ug/L	3.2	20
8638317	Total Barium (Ba)	2017/05/23	98	80 - 120	99	80 - 120	<1.0	ug/L	0.86	20
8638317	Total Beryllium (Be)	2017/05/23	101	80 - 120	100	80 - 120	<0.10	ug/L	NC	20
8638317	Total Bismuth (Bi)	2017/05/23	99	80 - 120	103	80 - 120	<1.0	ug/L	NC	20
8638317	Total Boron (B)	2017/05/23	95	80 - 120	94	80 - 120	<50	ug/L	NC	20
8638317	Total Cadmium (Cd)	2017/05/23	100	80 - 120	101	80 - 120	<0.010	ug/L	NC	20
8638317	Total Chromium (Cr)	2017/05/23	96	80 - 120	98	80 - 120	<1.0	ug/L	NC	20
8638317	Total Cobalt (Co)	2017/05/23	95	80 - 120	95	80 - 120	<0.20	ug/L	NC	20
8638317	Total Copper (Cu)	2017/05/23	NC	80 - 120	96	80 - 120	<0.20	ug/L	1.4	20
8638317	Total Iron (Fe)	2017/05/23	113	80 - 120	111	80 - 120	<5.0	ug/L	1.8	20
8638317	Total Lead (Pb)	2017/05/23	98	80 - 120	102	80 - 120	<0.20	ug/L	3.0	20
8638317	Total Manganese (Mn)	2017/05/23	98	80 - 120	99	80 - 120	<1.0	ug/L	NC	20
8638317	Total Molybdenum (Mo)	2017/05/23	101	80 - 120	101	80 - 120	<1.0	ug/L	NC	20
8638317	Total Nickel (Ni)	2017/05/23	94	80 - 120	96	80 - 120	<1.0	ug/L	NC	20
8638317	Total Selenium (Se)	2017/05/23	103	80 - 120	99	80 - 120	<0.10	ug/L	4.2	20
8638317	Total Silicon (Si)	2017/05/23					<100	ug/L	0.92	20

QUALITY ASSURANCE REPORT(CONT'D)

Hy-Geo Consulting

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8638317	Total Silver (Ag)	2017/05/23	104	80 - 120	104	80 - 120	<0.020	ug/L	NC	20
8638317	Total Strontium (Sr)	2017/05/23	NC	80 - 120	97	80 - 120	<1.0	ug/L	0.22	20
8638317	Total Thallium (TI)	2017/05/23	99	80 - 120	102	80 - 120	<0.010	ug/L	NC	20
8638317	Total Tin (Sn)	2017/05/23	100	80 - 120	102	80 - 120	<5.0	ug/L	NC	20
8638317	Total Titanium (Ti)	2017/05/23	108	80 - 120	102	80 - 120	<5.0	ug/L	NC	20
8638317	Total Uranium (U)	2017/05/23	98	80 - 120	97	80 - 120	<0.10	ug/L	NC	20
8638317	Total Vanadium (V)	2017/05/23	97	80 - 120	94	80 - 120	<5.0	ug/L	NC	20
8638317	Total Zinc (Zn)	2017/05/23	102	80 - 120	100	80 - 120	<5.0	ug/L	NC	20
8638317	Total Zirconium (Zr)	2017/05/23					<0.10	ug/L	NC	20
8638482	Turbidity	2017/05/20			100	80 - 120	<0.1	NTU	6.9	20
8638502	True Colour	2017/05/19			94	80 - 120	<5	Col. Unit	NC	10
8639166	Total Mercury (Hg)	2017/05/24	92	80 - 120	96	80 - 120	<0.010	ug/L	NC	20
8640667	Total Dissolved Solids	2017/05/26			99	80 - 120	<10	mg/L	9.5	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Hy-Geo Consulting

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Andy Lu, Ph.D., P.Chem., Scientific Specialist

Rob Reinert, B.Sc., Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Victoria: 460 Tennyson Place, Unit 1, Victoria, BC V82 658 Ph. (250) 365-5112 Tof Free: (869) 385-5112 Courtenay: 2755 B Maray Ave, Courtenay: BC V9N 6M9 Ph. (250) 339-7785 Toll Free: (800) 665-8566

18XXAM Job #: B737900

Company: HY-GEO COAL:	CULTING	if your drinking water source services two or more out how the Drinking Water Protection Act applies report results directly to local health authorities.	re homes, we strongly recommend that you contact local health authorities to find is to this system. Please be aware that, in this situation, we are legally obligated to						
Mailing Address: 1041 LABURIUM		All information on this form must be con	npleted before testing can commence						
Wichard Re	VRZ am9	Please note your invoice may be Sample Collection							
victoria, Bc hone#: 350 744 7	859	subject to a \$60 minimum bill.	For determining drinking water quality, samples should be representative of the water that will be come med; therefore, we suggest sampling at the kitchen tap. However, other sampling locations may be						
mall apkohuta	teks. net	Paymani Received: Yes No	used to determine pre-treatment water quality or for troubleshooting purposes. 1. Remove perstor/screen from faucet. 2. Let the water run for 5 mitutes.						
fter Hours Contact #: 250 744	7859	PLEASE CIRCLE ANALYSIS REQUESTED	 Label the bottle with your name, date and time you are taking the sample. 						
Regular Turnaround Time (TAT) R (5 days for most tests) Si		Source? useholds tur? Y/N Y? Y/N Y? Y/N	Fill all bottle(s) provided. Take care not to louch the inside of the bottle of underside of dap. Cap the sample and place it in fridge or small cooler with icepack. Remember: It is important that you do not contaminate the sample as you handle the container. Wash your hands before you start and be careful not to touch the rim of the bottle or the inside of the cap.						
PECIAL INSTRUCTIONS: teturn Cooler	sase specify)	en a Drinking Water na Drinking Water nate drinking this wa a boll water advison for Scan Scan Scan mand E. Coll	DON'T: Don't rime or boil any bottle you receive from the lab. Don't let the sample all out overnight, please refrigerate. Don't freeze the sample. Sample Transportation & Delivery 1. Sumples should arrive at the laboratories (Courtenay or Victoria) within 24 hrs of sampling. Ship						
Sample Identification (Sample Location &/or Description)	Sample Location (eg. Tap, Weilhead) Date/Time Sampled (24)	Samples from a Does source su Are individuals Are you on a both thinking Water & Home Safety So Total Colliforn is Total Colliforn is	Sample Transportation & Delivery 1. Sumples should arrive at the laboratories (Courtenay or Victoria) within 24 hrs of sampling. Ship						
BOOTH PROJECT	WELL 2017/5/	7 9 Y Y Y J J J	samples between Monday and Thursday to avoid lab scheduling conflicts. 2. The sample should be kept cool during transit (<8°C - refrigerated or packed on ico).						
2			Fit out the Chain of Custody (COC) form beside these instructions and submit with the sample, incomplete or missing COC's will result in delays impacting turnaround time and the lab's ability to						
		Y Y Y Y	proceed with time sensitive tests:						
3		NNNN	4 Delivery Options:						
4)		N N N N	Personally defiver samples to Courtonay or Victoria X Overnight shipping: If you ship a sample on the same day that it was collected you can use an						
		7777	overnight courier						
5		NNNN	Same day shipping: Available from Ken's Transfer, Ace Counter, and Greyhound (Courtenay only). Please contact the lab for details.						
	227,000	a and sign	Laboratory Use Only						
Print name and sign *Relimpurs New By: Date (yy/min/) 2017 5	id): Trne (24 hr): Receive	The course	Time (24hr): Time Temperature on Receipt (°C) Custody Seal Yels No N/A 7 (24SS Sensitive A) 10 B) 12 C) 13 Present?						
4. 19 un 201/19	1 100	KNOSON-GERN	Junt sampled & rec'd on ice: Intact?						

For further information and resources on result interpretation, please visit our Drinking Water Resource Center: http://maxxam.ca/maxxams-resource-centre-for-drinking-water-testing

BBY FCD-00189/2

Your C.O.C. #: WI009152

Attention:Al Kohut

Hy-Geo Consulting 1041 Laburnum Rd Victoria, BC Canada V8Z 2M9

Report Date: 2017/06/06

Report #: R2392902 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B741152 Received: 2017/05/29, 08:35

Sample Matrix: DRINKING WATER

Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity - Water (1)	1	2017/05/30	2017/05/30	BBY6SOP-00026	SM2320B
Chloride by Automated Colourimetry	1	N/A	2017/05/31	BBY6SOP-00011	SM 22 4500-Cl- E m
True Colour (Single Wavelength) (1)	1	N/A	2017/06/01	VIC SOP-00010	SM 22 2120 C m
Conductance - water (1)	1	N/A	2017/05/30	BBY6SOP-00026	SM-2510B
Fluoride	1	N/A	2017/05/31	BBY6SOP-00048	SM 22 4500-F C m
Iron Bacteria (1)	1	N/A	2017/05/29	VIC SOP-00114	SM 22 9240 m
Hardness Total (calculated as CaCO3)	1	N/A	2017/06/01	BBY WI-00033	Auto Calc
Mercury (Total) by CVAF	1	2017/06/01	2017/06/01	BBY7SOP-00015	BCMOE BCLM Oct2013 m
Heterotropic Plate Count Water Mem. Filt (1)	1	N/A	2017/05/29	BBY4 SOP-00003	Based on SM-9215
Na, K, Ca, Mg, S by CRC ICPMS (total)	1	N/A	2017/06/01	BBY7SOP-00003,	BCLM2005,EPA6020bR2m
Elements by CRC ICPMS (total)	1	N/A	2017/05/31	BBY7SOP-00003,	BCLM2005,EPA6020bR2m
Nitrogen (Total)	1	2017/06/01	2017/06/01	BBY6SOP-00016	SM 22 4500-N C m
Ammonia-N (Preserved)	1	N/A	2017/06/02	BBY6SOP-00009	SM 22 4500-NH3- G m
Nitrate + Nitrite (N)	1	N/A	2017/05/30	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrite (N) by CFA	1	N/A	2017/05/30	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrogen - Nitrate (as N)	1	N/A	2017/05/31	BBY6SOP-00010	SM 22 4500-NO3 I m
Nitrogen (Organic) (Cal. TKN, NH4,N/N)	1	N/A	2017/06/05	BBY WI-00033	Auto Calc
pH Water (1, 2)	1	N/A	2017/05/30	BBY6SOP-00026	SM-4500H+B
Sat. pH and Langelier Index (@ 4.4C)	1	N/A	2017/06/01	BBY WI-00033	Auto Calc
Sat. pH and Langelier Index (@ 60C)	1	N/A	2017/06/01	BBY WI-00033	Auto Calc
Sulphate by Automated Colourimetry	1	N/A	2017/05/31	BBY6SOP-00017	SM 22 4500-SO42- E m
Sulphate Reducing Bacteria (1)	1	N/A	2017/06/02	VIC SOP-00114	SM 22 9240 m
Sulphide - total	1	N/A	2017/06/02	BBY6SOP-00006	SM 22 4500-S2- D m
Total Dissolved Solids (Filt. Residue) (1)	1	N/A	2017/05/31	VIC SOP-00008	Based on SM 2540C
Total Coliform & E.Coli by MF-Chromocult (1)	1	N/A	2017/05/29	VIC SOP 00112	Based on SM-9222
Carbon (Total Organic) (3)	1	N/A	2017/05/31	BBY6SOP-00003	SM 22 5310 C m
Turbidity (1)	1	N/A	2017/06/01	VIC SOP-00011	SM 22 2130B m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

Your C.O.C. #: WI009152

Attention:Al Kohut

Hy-Geo Consulting 1041 Laburnum Rd Victoria, BC Canada V8Z 2M9

Report Date: 2017/06/06

Report #: R2392902 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B741152 Received: 2017/05/29, 08:35

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Victoria
- (2) The BC-MOE and APHA Standard Method require pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the BC-MOE/APHA Standard Method holding time.
- (3) TOC present in the sample should be considered as non-purgeable TOC.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

BC Env Customer Service, BC Environmental Customer Service

Email: Enviro.CS.BC@maxxam.ca

Phone# (604) 734 7276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Hy-Geo Consulting

RESULTS OF CHEMICAL ANALYSES OF DRINKING WATER

Maxxam ID					RD6062		
Sampling Date					2017/05/28		
Jamping Date					10:10		
COC Number					WI009152		
	UNITS	MAC	AO	OG	BOOTH WELL	RDL	QC Batch
ANIONS							
Nitrite (N)	mg/L	1	-	-	<0.0050	0.0050	8646944
Calculated Parameters							
Total Hardness (CaCO3)	mg/L	-	-	-	45.1	0.50	8643885
Nitrate (N)	mg/L	10	-	-	<0.020	0.020	8644321
Misc. Inorganics							•
Fluoride (F)	mg/L	1.5	-	-	0.170	0.010	8649169
Alkalinity (Total as CaCO3)	mg/L	-	-	-	109	0.5	8644995
Total Organic Carbon (C)	mg/L	-	-	-	5.83	0.50	8647623
Alkalinity (PP as CaCO3)	mg/L	-	-	-	<0.5	0.5	8644995
Bicarbonate (HCO3)	mg/L	-	-	-	133	0.5	8644995
Carbonate (CO3)	mg/L	-	-	-	<0.5	0.5	8644995
Hydroxide (OH)	mg/L	-	-	-	<0.5	0.5	8644995
Anions							•
Dissolved Sulphate (SO4)	mg/L	-	500	-	25.1	0.50	8648221
Dissolved Chloride (Cl)	mg/L	-	250	-	47	0.50	8648215
MISCELLANEOUS							
True Colour	Col. Unit	-	15	-	28 (1)	5	8650085
Nutrients							
Total Organic Nitrogen (N)	mg/L	-	-	-	0.386	0.020	8644393
Total Ammonia (N)	mg/L	-	-	-	0.11	0.0050	8652414
Nitrate plus Nitrite (N)	mg/L	-	-	-	<0.020	0.020	8646943
Total Nitrogen (N)	mg/L	-	-	-	0.495	0.020	8648336
Physical Properties							
Conductivity	uS/cm	-	-	-	419	1	8644994
рН	рН	-	7.0 : 10.5	-	7.5		8644993
Physical Properties							•
Total Dissolved Solids	mg/L	-	500	-	263	10	8645840
Turbidity	NTU	see remark	see remark	see remark	2.5	0.1	8650554
No Fill No Exce	edance			•	•	•	
	1 criteria p	oolicy/level					
,	both criter	•					
RDL = Reportable Detection		•					
(1) Sample ran past hold time							

Hy-Geo Consulting

MERCURY BY COLD VAPOR (DRINKING WATER)

Maxxam ID				RD6062			
Sampling Da	ate			2017/05/28 10:10			
COC Numbe	er			WI009152			
		UNITS	MAC	BOOTH WELL	RDL	QC Batch	
Elements							
Total Mercu	ry (Hg)	ug/L	1	<0.010	0.010	8648619	
No Fill	No Exceedance	9					
Grey	Grey Exceeds 1 criteria policy/level						
Black	Black Exceeds both criteria/levels						
RDL = Repor	table Detection L	imit					

Hy-Geo Consulting

ELEMENTS BY ATOMIC SPECTROSCOPY (DRINKING WATER)

Maxxam ID					RD6062		
Sampling Date					2017/05/28		
Janipinig Date					10:10		
COC Number					WI009152		
	UNITS	MAC	AO	OG	BOOTH WELL	RDL	QC Batch
Total Metals by ICPMS							
Total Aluminum (Al)	ug/L	-	-	100	104	3.0	8646982
Total Antimony (Sb)	ug/L	6	-	-	<0.50	0.50	8646982
Total Arsenic (As)	ug/L	10	-	-	5.17	0.10	8646982
Total Barium (Ba)	ug/L	1000	-	-	17.7	1.0	8646982
Total Beryllium (Be)	ug/L	-	-	-	<0.10	0.10	8646982
Total Bismuth (Bi)	ug/L	-	-	-	<1.0	1.0	8646982
Total Boron (B)	ug/L	5000	-	-	51	50	8646982
Total Cadmium (Cd)	ug/L	5	-	-	<0.010	0.010	8646982
Total Chromium (Cr)	ug/L	50	-	-	<1.0	1.0	8646982
Total Cobalt (Co)	ug/L	-	-	-	<0.20	0.20	8646982
Total Copper (Cu)	ug/L	-	1000	-	0.90	0.20	8646982
Total Iron (Fe)	ug/L	-	300	-	650	5.0	8646982
Total Lead (Pb)	ug/L	10	-	-	<0.20	0.20	8646982
Total Manganese (Mn)	ug/L	-	50	-	377	1.0	8646982
Total Molybdenum (Mo)	ug/L	-	-	-	<1.0	1.0	8646982
Total Nickel (Ni)	ug/L	-	-	-	<1.0	1.0	8646982
Total Selenium (Se)	ug/L	50	-	-	<0.10	0.10	8646982
Total Silicon (Si)	ug/L	-	1	-	5290	100	8646982
Total Silver (Ag)	ug/L	-	-	-	<0.020	0.020	8646982
Total Strontium (Sr)	ug/L	-	1	-	304	1.0	8646982
Total Thallium (TI)	ug/L	-	-	-	<0.010	0.010	8646982
Total Tin (Sn)	ug/L	-	1	1	<5.0	5.0	8646982
Total Titanium (Ti)	ug/L	-	-	-	<5.0	5.0	8646982
Total Uranium (U)	ug/L	20	-	-	<0.10	0.10	8646982
Total Vanadium (V)	ug/L	-	-	-	<5.0	5.0	8646982
Total Zinc (Zn)	ug/L	-	5000	-	<5.0	5.0	8646982
Total Zirconium (Zr)	ug/L	-	-	-	0.15	0.10	8646982
Total Calcium (Ca)	mg/L	-	-	-	13.6	0.050	8644320
Total Magnesium (Mg)	mg/L	-	-	-	2.73	0.050	8644320
Total Potassium (K)	mg/L	-	-	-	0.850	0.050	8644320
Total Sodium (Na)	mg/L	-	200	-	73.2	0.050	8644320
Total Sulphur (S)	mg/L	-	-	-	8.9	3.0	8644320
No Fill No Exceeda	nce						
Grey Exceeds 1 cr	iteria po	licy/le	vel				
Black Exceeds bot							
RDL = Reportable Detection							

Page 5 of 13

Hy-Geo Consulting

MICROBIOLOGY (DRINKING WATER)

Maxxam ID				RD6062					
Sampling Dat	.0			2017/05/28					
Sampling Dat	.6			10:10					
COC Number				WI009152					
		UNITS	MAC	BOOTH WELL	RDL	QC Batch			
Microbiologic	cal Param.								
Heterotrophi	c Plate Count	CFU/mL	-	26	1	8647528			
Iron Bacteria		CFU/mL	-	2200	25	8653651			
Sulphate redu	ucing bacteria	CFU/mL	-	27000	75	8653652			
Total Coliforn	ns	CFU/100mL	0	210	N/A	8646285			
E. coli		CFU/100mL	0	0	N/A	8646285			
No Fill	No Exceedanc	е							
Grey	Exceeds 1 crite	eria policy/lev	/el						
Black	Black Exceeds both criteria/levels								
RDL = Report	RDL = Reportable Detection Limit								
N/A = Not Ap	plicable								

Hy-Geo Consulting

CALCULATED PARAMETERS (DRINKING WATER)

Maxxam ID		RD6062	
Sampling Date		2017/05/28 10:10	
COC Number		WI009152	
	UNITS	BOOTH WELL	QC Batch
Parameter			
Langelier Index (@ 4.4C)	N/A	-1.26	8644396
Langelier Index (@ 60C)	N/A	-0.219	8644397
Saturation pH (@ 4.4C)	N/A	8.77	8644396
Saturation pH (@ 60C)	N/A	7.73	8644397

Hy-Geo Consulting

MISCELLANEOUS (DRINKING WATER)

Maxxam ID				RD6062				
Sampling Da	ate			2017/05/28 10:10				
COC Numbe	er			WI009152				
		UNITS	AO	BOOTH WELL	RDL	QC Batch		
MISCELLAN	EOUS							
Total Sulphi	de	mg/L	0.05	0.165	0.0050	8649919		
No Fill	No Exceedance	9						
Grey	Exceeds 1 criteria policy/level							
Black	Exceeds both criteria/levels							
RDL = Repor	table Detection L	imit						

Hy-Geo Consulting

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	6.0°C
-----------	-------

MAC,AO,OG: The guidelines that have been included in this report have been taken from the Canadian Drinking Water Quality Summary Table, February 2017.

Criteria A = Maximum Acceptable Concentration (MAC) / Criteria B = Aesthetic Objectives (AO) / Criteria C = Operational Guidance Values (OG) It is recommended to consult these guidelines when interpreting your data since there are non-numerical guidelines that are not included on this report.

Turbidity Guidelines:

- 1. Chemically assisted filtration: less than or equal to 0.3 NTU in 95% of the measurements or 95% of the time each month. Shall not exceed 1.0 NTU at any time.
- 2. Slow sand / diatomaceous earth filtration: less than or equal to 1.0 NTU in 95% of the measurements or 95% of the time each month. Shall not exceed 3.0 NTU at any time.
- 3. Membrane filtration: less than or equal to 0.1 NTU in 99% of the measurements made or at least 99% of the time each calendar month. Shall not exceed 0.3 NTU at any time.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Hy-Geo Consulting

			Matrix	rix Spike Spiked Blank		Method B	lank	RPE)	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8644993	рН	2017/05/30			100	96 - 104			0.26	N/A
8644994	Conductivity	2017/05/30			102	90 - 110	<1	uS/cm	0.12	20
8644995	Alkalinity (PP as CaCO3)	2017/05/30	4.4	N/A			<0.5	mg/L	NC	20
8644995	Alkalinity (Total as CaCO3)	2017/05/30	NC	80 - 120	91	80 - 120	<0.5	mg/L	0.39	20
8644995	Bicarbonate (HCO3)	2017/05/30					<0.5	mg/L	0.39	20
8644995	Carbonate (CO3)	2017/05/30					<0.5	mg/L	NC	20
8644995	Hydroxide (OH)	2017/05/30					<0.5	mg/L	NC	20
8645840	Total Dissolved Solids	2017/05/31			98	80 - 120	12, RDL=10	mg/L	NC	20
8646285	E. coli	2017/05/29							NC	N/A
8646285	Total Coliforms	2017/05/29							NC	N/A
8646943	Nitrate plus Nitrite (N)	2017/05/30	109	80 - 120	106	80 - 120	<0.020	mg/L	NC	25
8646944	Nitrite (N)	2017/05/30	104	80 - 120	100	80 - 120	<0.0050	mg/L	NC	20
8646982	Total Aluminum (Al)	2017/05/31	107	80 - 120	104	80 - 120	<3.0	ug/L		
8646982	Total Antimony (Sb)	2017/05/31	103	80 - 120	100	80 - 120	<0.50	ug/L		
8646982	Total Arsenic (As)	2017/05/31	101	80 - 120	101	80 - 120	<0.10	ug/L		
8646982	Total Barium (Ba)	2017/05/31	102	80 - 120	100	80 - 120	<1.0	ug/L		
8646982	Total Beryllium (Be)	2017/05/31	105	80 - 120	104	80 - 120	<0.10	ug/L		
8646982	Total Bismuth (Bi)	2017/05/31	96	80 - 120	101	80 - 120	<1.0	ug/L		
8646982	Total Boron (B)	2017/05/31	99	80 - 120	96	80 - 120	<50	ug/L		
8646982	Total Cadmium (Cd)	2017/05/31	101	80 - 120	105	80 - 120	<0.010	ug/L		
8646982	Total Chromium (Cr)	2017/05/31	98	80 - 120	101	80 - 120	<1.0	ug/L		
8646982	Total Cobalt (Co)	2017/05/31	96	80 - 120	100	80 - 120	<0.20	ug/L		
8646982	Total Copper (Cu)	2017/05/31	NC	80 - 120	98	80 - 120	<0.20	ug/L		
8646982	Total Iron (Fe)	2017/05/31	101	80 - 120	104	80 - 120	<5.0	ug/L		
8646982	Total Lead (Pb)	2017/05/31	104	80 - 120	102	80 - 120	<0.20	ug/L	NC	20
8646982	Total Manganese (Mn)	2017/05/31	96	80 - 120	100	80 - 120	<1.0	ug/L		
8646982	Total Molybdenum (Mo)	2017/05/31	94	80 - 120	100	80 - 120	<1.0	ug/L		
8646982	Total Nickel (Ni)	2017/05/31	97	80 - 120	100	80 - 120	<1.0	ug/L		
8646982	Total Selenium (Se)	2017/05/31	105	80 - 120	106	80 - 120	<0.10	ug/L		
8646982	Total Silicon (Si)	2017/05/31					<100	ug/L		
8646982	Total Silver (Ag)	2017/05/31	99	80 - 120	102	80 - 120	<0.020	ug/L		
8646982	Total Strontium (Sr)	2017/05/31	NC	80 - 120	100	80 - 120	<1.0	ug/L		

QUALITY ASSURANCE REPORT(CONT'D)

Hy-Geo Consulting

			Matrix Spike		Spiked	Blank	Method I	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8646982	Total Thallium (TI)	2017/05/31	102	80 - 120	101	80 - 120	<0.010	ug/L		
8646982	Total Tin (Sn)	2017/05/31	96	80 - 120	100	80 - 120	<5.0	ug/L		
8646982	Total Titanium (Ti)	2017/05/31	94	80 - 120	99	80 - 120	<5.0	ug/L		
8646982	Total Uranium (U)	2017/05/31	105	80 - 120	104	80 - 120	<0.10	ug/L		
8646982	Total Vanadium (V)	2017/05/31	96	80 - 120	105	80 - 120	<5.0	ug/L		
8646982	Total Zinc (Zn)	2017/05/31	101	80 - 120	100	80 - 120	<5.0	ug/L		
8646982	Total Zirconium (Zr)	2017/05/31					<0.10	ug/L		
8647528	Heterotrophic Plate Count	2017/05/29							15	N/A
8647623	Total Organic Carbon (C)	2017/05/31	102	80 - 120	112	80 - 120	<0.50	mg/L	9.9	20
8648215	Dissolved Chloride (CI)	2017/05/31	102	80 - 120	104	80 - 120	<0.50	mg/L	1.4	20
8648221	Dissolved Sulphate (SO4)	2017/05/31	100	80 - 120	102	80 - 120	<0.50	mg/L	0.59	20
8648336	Total Nitrogen (N)	2017/06/01	NC	80 - 120	104	80 - 120	<0.020	mg/L	2.3	20
8648619	Total Mercury (Hg)	2017/06/01	89	80 - 120	95	80 - 120	<0.010	ug/L	NC	20
8649169	Fluoride (F)	2017/05/31	106	80 - 120	100	80 - 120	0.012, RDL=0.010	mg/L	1.3	20
8649919	Total Sulphide	2017/06/02	84	80 - 120	95	80 - 120	<0.0050	mg/L	NC	20
8650085	True Colour	2017/06/01			91	80 - 120	<5	Col. Unit	NC	10
8650554	Turbidity	2017/06/01			98	80 - 120	<0.1	NTU	4.3	20
8652414	Total Ammonia (N)	2017/06/02	105	80 - 120	113	80 - 120	<0.0050	mg/L	7.3	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Hy-Geo Consulting

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Rob Reinert, B.Sc., Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RZUNCA

Victoria: 460 Tennyson Place, Unit 1, Victoria, BC V8Z 6S8 Ph: (250) 385-6112 Toll Free: (866) 385-6112 Courtenay: 2755 B Moray Ave, Courtenay, BC V9N 8M9 Ph: (250) 338-7786 Toll Free: (800) 665-8598

DATE AND	CONSU KOHUT LABURNU	-		out h repor	ow th	e Orin ilts din	king V actly t	Vater o loca	Prote I hea	ection alth au	Act ap uthoritie	plies to es.	Maxxam Job #: 57 11 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Phone#: 250 E-mail apk	ORIA , 1. 744-72 Shutat	859		Payr	ject t	12.110Ez	60 m ved: Y	inim ′es	um t	No		*8	Sample Collection For determining drinking water quality, samples should be representative of the water that will be consumed; therefore, we suggest sampling at the kitchen tap. However, other sampling locations may be used to determine pre-treatment water quality or for troubleshooting purposes. 1. Remove aerator/screen from faucet. 2. Let the water run for 5 minutes. 3. Label the bottle with your name, date and time you are taking the sample.
After Hours Contact #: Contact Contact	Surch	narges will Required:	ontact the lab		N/A 2 Splot	drinking this water? Y/N	PLE			ECT	BELOV	V	4. Fill all bottle(s) provided. Take care not to touch the inside of the bottle or underside of cap. 5. Cap the sample and place it in fridge or small cooler with icepack. Remember: It is important that you do not contaminate the sample as you handle the container. Wash your hands before you start and be careful not to touch the rim of the bottle or the inside of the cap. DON'T:
Sample Identific (Sample Location &/or I		Sample Location (eg. Tap, Wellhead)	Date/Time Sampled (24hr)	Samples from a Drinki	Does source supply m	Are individuals drinking this water? Y	Drinking Water Scan	Home Safety Scan	Total Metals Scan Includ	Total Coliform and E. C.	VIHA PA	Report Drinking Water Criteria DWG14	Don't rinse or boil any bottle you receive from the lab. Don't let the sample sit out overnight, please refrigerate. Don't freeze the sample. Sample Transportation & Delivery 1. Samples should arrive at the laboratories (Courtenay or Victoria) within 24 hrs of sampling. Ship
1 BOOTH WELL		WELL	28/05/17	N (S)	(N)	N (100	#	Z	V	×	samples between Monday and Thursday to avoid lab scheduling conflicts. 2. The sample should be kept cool during transit (<8°C - refrigerated or packed on ice).
3	N N N N N N N N N N N N N N N N N N N	W	Salate.	Y N Y	,01	Y Y N Y Y	1	8			-	×	 Fill out the Chain of Custody (COC) form beside these instructions and submit with the sample. Incomplete or missing COC's will result in delays impacting turnsround time and the lab's ability to proceed with time sensitive tests.
4 7 8 8 8			line.	Y N	N Y N	N N N N				10		x	 Delivery Options: Personally deliver samples to Courtenay or Victoria Overnight shipping: If you ship a sample on the same day that it was collected you can use an
5				Y N	Y N	N N	-					x	overnight courier. Same day shipping: Available from Ken's Transfer, Ace Courier, and Greyhound (Courtenay only). Please contact the lab for details.
	Date (yy/mm/dd):	Time (24 hr	Print name and): Received to	y:	55/		10 m	* 11			mm/dd		Laboratory Use Only Time (24hr): Sensitive A) 7 B) 6 C) \$ Present? Just sampled & rec'd on ice: Intact?

For further information and resources on result interpretation, please visit our Drinking Water Resource Center: http://maxxam.ca/maxxams-resource-centre-for-drinking-water-testing

BBY FCD-00189/2

Your C.O.C. #: WI009332

Attention:Al Kohut

Hy-Geo Consulting 1041 Laburnum Rd Victoria, BC Canada V8Z 2M9

Report Date: 2017/01/18

Report #: R2334505 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B701774 Received: 2017/01/10, 15:22

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity - Water (1)	1	2017/01/16	2017/01/17	BBY6SOP-00026	SM2320B
Chloride by Automated Colourimetry	1	N/A	2017/01/13	BBY6SOP-00011	SM 22 4500-Cl- E m
True Colour (Single Wavelength) (1)	1	N/A	2017/01/13	VIC SOP-00010	Based on SM-2120 C
Conductance - water (1)	1	N/A	2017/01/17	BBY6SOP-00026	SM-2510B
Fluoride	1	N/A	2017/01/13	BBY6SOP-00048	SM 22 4500-F C m
Hardness Total (calculated as CaCO3)	1	N/A	2017/01/16	BBY WI-00033	Auto Calc
Mercury (Total) by CVAF	1	2017/01/16	2017/01/16	BBY7SOP-00015	BCMOE BCLM Oct2013 m
Na, K, Ca, Mg, S by CRC ICPMS (total)	1	N/A	2017/01/16	BBY7SOP-00003,	BCLM2005,EPA6020bR2m
Elements by CRC ICPMS (total)	1	2017/01/13	2017/01/14	BBY7SOP-00003,	BCLM2005,EPA6020bR2m
Nitrate + Nitrite (N)	1	N/A	2017/01/12	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrite (N) by CFA	1	N/A	2017/01/12	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrogen - Nitrate (as N)	1	N/A	2017/01/13	BBY6SOP-00010	SM 22 4500-NO3 I m
pH Water (1, 2)	1	N/A	2017/01/17	BBY6SOP-00026	SM-4500H+B
Sulphate by Automated Colourimetry	1	N/A	2017/01/13	BBY6SOP-00017	SM 22 4500-SO42- E m
Total Dissolved Solids (Filt. Residue) (1)	1	N/A	2017/01/18	VIC SOP-00008	Based on SM 2540C
Total Coliform & E.Coli by MF-Chromocult (1)	1	N/A	2017/01/10	VIC SOP 00112	Based on SM-9222
Turbidity (1)	1	N/A	2017/01/12	VIC SOP-00011	Based on SM - 2130

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope

Your C.O.C. #: WI009332

Attention:Al Kohut

Hy-Geo Consulting 1041 Laburnum Rd Victoria, BC Canada V8Z 2M9

Report Date: 2017/01/18

Report #: R2334505 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B701774 Received: 2017/01/10, 15:22

dilution mothods Desults relate to

dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Victoria
- (2) The BC-MOE and APHA Standard Method require pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the BC-MOE/APHA Standard Method holding time.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. BC Env Customer Service, BC Environmental Customer Service Email: Enviro.CS.BC@maxxam.ca Phone# (604) 734 7276

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID						QJ3623				
Camplina Data						2017/01/10				
Sampling Date						11:30				
COC Number						WI009332				
		UNITS	MAC	AO	OG	HICKEY SPRING	RDL	QC Batch		
ANIONS										
Nitrite (N)		mg/L	1	-	-	0.0136	0.0050	8526831		
Calculated Parame	ters			•	-		•			
Nitrate (N)		mg/L	10	-	-	0.771	0.020	8524846		
Misc. Inorganics										
Fluoride (F)		mg/L	1.5	-	-	0.064	0.010	8528512		
Alkalinity (Total as	CaCO3)	mg/L	-	-	-	58.9	0.5	8528833		
Alkalinity (PP as Ca	CO3)	mg/L	-	-	-	<0.5	0.5	8528833		
Bicarbonate (HCO3)	mg/L	-	-	-	71.9	0.5	8528833		
Carbonate (CO3)		mg/L	-	-	-	<0.5	0.5	8528833		
Hydroxide (OH)		mg/L	-	-	-	<0.5	0.5	8528833		
Anions										
Dissolved Sulphate	(SO4)	mg/L	-	500	-	13.1	0.50	8528017		
Dissolved Chloride	(CI)	mg/L	-	250	-	20	0.50	8528016		
MISCELLANEOUS										
True Colour		Col. Unit	-	15	-	75	5	8530564		
Nutrients										
Nitrate plus Nitrite	(N)	mg/L	-	-	-	0.784	0.020	8526823		
Physical Properties	;			•	-					
Conductivity		uS/cm	-	-	-	219	1	8528835		
рН		рН	-	6.5:8.5	-	7.0		8528834		
Physical Properties	3									
Total Dissolved Soli	ds	mg/L	-	500	-	155	10	8529527		
Turbidity		NTU	see remark	see remark	see remark	50.0	0.1	8528453		
No Fill	No Excee	edance								
Grey Exceeds 1 criteria policy/level										
Black Exceeds both criteria/levels										
RDL = Reportable D										
· · ·										

Hy-Geo Consulting

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID					QJ3623					
Sampling Date					2017/01/10					
Sampling Date					11:30					
COC Number					WI009332					
	UNITS	MAC	AO	OG	HICKEY SPRING	RDL	QC Batch			
Total Metals by ICPMS										
Total Aluminum (Al)	ug/L	-	-	100	3080	3.0	8527018			
Total Antimony (Sb)	ug/L	6	1	1	<0.50	0.50	8527018			
Total Arsenic (As)	ug/L	10	-	1	0.65	0.10	8527018			
Total Barium (Ba)	ug/L	1000	-	1	53.5	1.0	8527018			
Total Beryllium (Be)	ug/L	-	1	1	<0.10	0.10	8527018			
Total Bismuth (Bi)	ug/L	-	-	-	<1.0	1.0	8527018			
Total Boron (B)	ug/L	5000	1	1	<50	50	8527018			
Total Cadmium (Cd)	ug/L	5	1	-	0.041	0.010	8527018			
Total Chromium (Cr)	ug/L	50	-	-	2.9	1.0	8527018			
Total Cobalt (Co)	ug/L	-	1	-	0.78	0.50	8527018			
Total Copper (Cu)	ug/L	-	1000	-	7.94	0.50	8527018			
Total Iron (Fe)	ug/L	-	300	-	2470	10	8527018			
Total Lead (Pb)	ug/L	10	-	-	0.93	0.20	8527018			
Total Lithium (Li)	ug/L	-	1	1	8.0	5.0	8527018			
Total Manganese (Mn)	ug/L	-	50	1	77.6	1.0	8527018			
Total Mercury (Hg)	ug/L	1	-	1	<0.050	0.050	8527018			
Total Molybdenum (Mo)	ug/L	-	1	1	<1.0	1.0	8527018			
Total Nickel (Ni)	ug/L	-	-	1	3.5	1.0	8527018			
Total Selenium (Se)	ug/L	50	-	1	<0.10	0.10	8527018			
Total Silicon (Si)	ug/L	-	1	1	10500	100	8527018			
Total Silver (Ag)	ug/L	-	-	1	0.030	0.020	8527018			
Total Strontium (Sr)	ug/L	-	1	1	129	1.0	8527018			
Total Thallium (TI)	ug/L	-	-	-	<0.050	0.050	8527018			
Total Tin (Sn)	ug/L	-	-	-	<5.0	5.0	8527018			
Total Titanium (Ti)	ug/L	-	-	1	104	5.0	8527018			
Total Uranium (U)	ug/L	20	-	1	<0.10	0.10	8527018			
Total Vanadium (V)	ug/L	-	-	1	5.0	5.0	8527018			
Total Zinc (Zn)	ug/L	-	5000	1	12.4	5.0	8527018			
Total Zirconium (Zr)	ug/L	-	-	-	0.50	0.50	8527018			
No Fill No Exceedar	No Fill No Exceedance									
Grey Exceeds 1 cr	iteria po	olicy/le	vel							
Black Exceeds bot	h criteri	a/level	S							
RDL = Reportable Detection L	imit	· 								

Hy-Geo Consulting

MICROBIOLOGY (WATER)

Maxxam ID				QJ3623				
Sampling Da			2017/01/10 11:30					
COC Number	•			WI009332				
		UNITS	MAC	HICKEY SPRING	RDL	QC Batch		
Microbiological Param.								
Total Coliforn	ns	CFU/100mL	<1	SEE NOTE (1)	1	8525879		
E. coli CFU/100mL <1 87 1 852								
No Fill	No Exceedance							
Grey	Exceeds 1 criteria policy/level							
Black	Exceeds both criteria/levels							
RDL = Reportable Detection Limit								

⁽¹⁾ Due to confluent growth a calculated estimate of >2800 is given.

Hy-Geo Consulting

TOT. METALS W/ CV HG FOR DRINKING WATER (WATER)

Maxxam ID				QJ3623						
Sampling Date					2017/01/10					
					11:30					
COC Number					WI009332					
		UNITS	MAC	AO	HICKEY SPRING	RDL	QC Batch			
Calculated Parameters										
Total Hardnes	s (CaCO3)	mg/L	-	-	71.9	0.50	8524840			
Elements										
Total Mercury	ug/L	1	-	<0.010	0.010	8528115				
Total Metals by ICPMS										
Total Calcium	mg/L	-	-	20.0	0.050	8524841				
Total Magnesi	mg/L	-	-	5.33	0.050	8524841				
Total Potassiu	m (K)	mg/L	-	-	1.76	0.050	8524841			
Total Sodium	mg/L	-	200	17.2	0.050	8524841				
Total Sulphur (S) mg/L 4.7 3.0 8524							8524841			
No Fill	No Exceedance									
Grey	Exceeds 1 criteria policy/level									
Black	Exceeds both criteria/levels									
RDL = Reportable Detection Limit										

Hy-Geo Consulting

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	8.7°C

MAC,AO,OG: The guidelines that have been included in this report have been taken from the Canadian Drinking Water Quality Summary Table, October 2014.

Criteria A = Maximum Acceptable Concentration (MAC) / Criteria B = Aesthetic Objectives (AO) / Criteria C = Operational Guidance Values (OG) It is recommended to consult these guidelines when interpreting your data since there are non-numerical guidelines that are not included on this report.

Turbidity Guidelines:

- 1. Chemically assisted filtration: less than or equal to 0.3 NTU in 95% of the measurements or 95% of the time each month. Shall not exceed 1.0 NTU at any time.
- 2. Slow sand / diatomaceous earth filtration: less than or equal to 1.0 NTU in 95% of the measurements or 95% of the time each month. Shall not exceed 3.0 NTU at any time.
- 3. Membrane filtration: less than or equal to 0.1 NTU in 99% of the measurements made or at least 99% of the time each calendar month. Shall not exceed 0.3 NTU at any time.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Hy-Geo Consulting

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	% Recovery QC Limits		QC Limits	Value UNITS		Value (%)	QC Limits
8526823	Nitrate plus Nitrite (N)	2017/01/12	104	80 - 120	107	80 - 120	<0.020	mg/L	NC	25
8526831	Nitrite (N)	2017/01/12	98	80 - 120	97	80 - 120	<0.0050	mg/L	NC	20
8527018	Total Aluminum (Al)	2017/01/13	NC	80 - 120	110	80 - 120	<3.0	ug/L		
8527018	Total Antimony (Sb)	2017/01/13	98	80 - 120	103	80 - 120	<0.50	ug/L		
8527018	Total Arsenic (As)	2017/01/13	101	80 - 120	107	80 - 120	<0.10	ug/L		
8527018	Total Barium (Ba)	2017/01/13	95	80 - 120	99	80 - 120	<1.0	ug/L		
8527018	Total Beryllium (Be)	2017/01/13	103	80 - 120	108	80 - 120	<0.10	ug/L		
8527018	Total Bismuth (Bi)	2017/01/13	98	80 - 120	94	80 - 120	<1.0	ug/L		
8527018	Total Boron (B)	2017/01/13	98	80 - 120	102	80 - 120	<50	ug/L		
8527018	Total Cadmium (Cd)	2017/01/13	98	80 - 120	108	80 - 120	<0.010	ug/L		
8527018	Total Chromium (Cr)	2017/01/13	101	80 - 120	100	80 - 120	<1.0	ug/L		
8527018	Total Cobalt (Co)	2017/01/13	103	80 - 120	105	80 - 120	<0.50	ug/L		
8527018	Total Copper (Cu)	2017/01/13	NC	80 - 120	106	80 - 120	<0.50	ug/L		
8527018	Total Iron (Fe)	2017/01/13	NC	80 - 120	108	80 - 120	<10	ug/L		
8527018	Total Lead (Pb)	2017/01/13	NC	80 - 120	97	80 - 120	<0.20	ug/L	5.1	20
8527018	Total Lithium (Li)	2017/01/13	98	80 - 120	104	80 - 120	<5.0	ug/L		
8527018	Total Manganese (Mn)	2017/01/13	NC	80 - 120	101	80 - 120	<1.0	ug/L		
8527018	Total Mercury (Hg)	2017/01/13	100	80 - 120	107	80 - 120	<0.050	ug/L		
8527018	Total Molybdenum (Mo)	2017/01/13	105	80 - 120	110	80 - 120	<1.0	ug/L		
8527018	Total Nickel (Ni)	2017/01/13	106	80 - 120	107	80 - 120	<1.0	ug/L		
8527018	Total Selenium (Se)	2017/01/13	103	80 - 120	113	80 - 120	<0.10	ug/L		
8527018	Total Silicon (Si)	2017/01/13					<100	ug/L		
8527018	Total Silver (Ag)	2017/01/13	102	80 - 120	109	80 - 120	<0.020	ug/L		
8527018	Total Strontium (Sr)	2017/01/13	NC	80 - 120	97	80 - 120	<1.0	ug/L		
8527018	Total Thallium (TI)	2017/01/13	100	80 - 120	101	80 - 120	<0.050	ug/L		
8527018	Total Tin (Sn)	2017/01/13	NC	80 - 120	98	80 - 120	<5.0	ug/L		
8527018	Total Titanium (Ti)	2017/01/13	106	80 - 120	99	80 - 120	<5.0	ug/L		
8527018	Total Uranium (U)	2017/01/13	98	80 - 120	96	80 - 120	<0.10	ug/L		
8527018	Total Vanadium (V)	2017/01/13	102	80 - 120	105	80 - 120	<5.0	ug/L		
8527018	Total Zinc (Zn)	2017/01/13	NC	80 - 120	113	80 - 120	<5.0	ug/L		
8527018	Total Zirconium (Zr)	2017/01/13					<0.50	ug/L		
8528016	Dissolved Chloride (Cl)	2017/01/13	NC	80 - 120	103	80 - 120	<0.50	mg/L	0.46	20

QUALITY ASSURANCE REPORT(CONT'D)

Hy-Geo Consulting

			Matrix Spike		Spiked	Blank	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8528017	Dissolved Sulphate (SO4)	2017/01/13			102	80 - 120	0.64, RDL=0.50	mg/L	0.14	20
8528115	Total Mercury (Hg)	2017/01/16	91	80 - 120	96	80 - 120	<0.010	ug/L	NC	20
8528453	Turbidity	2017/01/12			95	80 - 120	<0.1	NTU	NC	20
8528512	Fluoride (F)	2017/01/13	98	80 - 120	98	80 - 120	0.011, RDL=0.010	mg/L	0	20
8528833	Alkalinity (PP as CaCO3)	2017/01/17	0	N/A			<0.5	mg/L	NC	20
8528833	Alkalinity (Total as CaCO3)	2017/01/17	NC	80 - 120	92	80 - 120	<0.5	mg/L	2.5	20
8528833	Bicarbonate (HCO3)	2017/01/17					<0.5	mg/L	2.5	20
8528833	Carbonate (CO3)	2017/01/17					<0.5	mg/L	NC	20
8528833	Hydroxide (OH)	2017/01/17					<0.5	mg/L	NC	20
8528834	рН	2017/01/17			101	96 - 104			0.29	N/A
8528835	Conductivity	2017/01/17			105	90 - 110	1,RDL=1	uS/cm	0.46	20
8529527	Total Dissolved Solids	2017/01/18			82	80 - 120	<10	mg/L	NC	20
8530564	True Colour	2017/01/13			93	80 - 120	<5	Col. Unit	0	10

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Hy-Geo Consulting

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

David Nadler, AASc, Victoria Operations Manager

Rob Reinert, B.Sc., Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Victorie: 460 Tennyson Pisco, Unit 1, Victoris, BC V8Z 658 Ph; (250) 385-6112 Toll Free: (866) 365-6112 Courteney; 2755 B Morey Ave, Courteney, BC V9N 8M9 Ph; (250) 336-7766 Toll Free; (800) 665-8586

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	M									Maxxam Job #: 67 61774		
Company:	HY-GED CON	SULTING-									nomes, we strongly recommend that you contact local health authorities to find		
Contact Name:	AL KOHUT			ort results							o this system. Please be aware that, in this situation, we are legally obligated to		
Mailing Address:	1041 LABURNUM	Rb	All	All information on this form must be completed before testing can commence									
L	ICTURIA, BC V	82 2M9	Ple	ase not	e you	ır inv	oice r	nay b	е		Sample Collection		
Phone #:	250 744-785 aptohut a te	9		subject to a \$60 Payment Received				bill.	. C	1	For determining drinking water quality, samples should be representative of the water that will be consumed; therefore, we suggest sampling at the kitchen tap. However, other sampling locations may be used to determine pre-treatment water quality or for troubleshooting purposes.		
											Remove aerator/screen from faucet. Let the water run for 5 minutes.		
After Hours Con	tact#: 250 477	3418	PLI	PLEASE CIRCLE ANALYSIS REQUESTED							Label the bottle with your name, date and time you are taking the sample.		
Regular Turnard (5 days for most	t tests) Sur	H Please contac harges will be a Required:	pplied	households? Y/N water? Y/N		PLEAS	& Hg	1 1	BELOV	DWG14	4. Fill all bottle(s) provided. Take care not to touch the inside of the bottle or underside of cap. 5. Cap the sample and place it in fridge or small cooler with Icepack. Remember: It is important that you do not contaminate the sample as you handle the container. Wash your hands before you start and be careful not to touch the rim of the bottle or the inside of the cap.		
SPECIAL INSTRUCT Return Cooler	TIONS: Ship Sample Bottles (pleas	se specify)	from a Drinking Water	pply multiple drinking this	1.0	er Scan	Scen including Hardness	1 5		Criteria	DON'T: Don't rinse or boil any bottle you receive from the lab. Don't let the sample sit out overnight, please refrigerate. Don't freeze the sample.		
	ple identification ocation &/or Description)		te/Time oled (24hr)	Does source su Are individuals	Are you on a	Drinking Water	Actais	Dtal Coliform	K	Report Drinking Water	Sample Transportation & Delivery 1- Samples should arrive at the laboratories (Courtenay or Victoria) within 24 hrs of sampling. Ship		
1 Moury	SPRING		1/01/10 Y	YY	Y	V	V	4		x	samples between Monday and Thursday to avoid lab scheduling conflicts.		
MICKEY	SPRING	SPIRING /	1:30AUN	NN	(N	1	٠,	1	_		The sample should be kept cool during transit (<8°C - refrigerated or packed on ice).		
2			V N	NN	N			П		×	 Fill out the Chain of Custody (COC) form beside these instructions and submit with the sample. Incomplete or missing COC's will result in delays impacting turnaround time and the jab's ability to 		
			Y	YY	Y	+	+	\vdash	+	+	proceed with time sensitive tests.		
3			N	N N	N					X	4. Delivery Options:		
4			Y	YY	Υ			П		×	Personally deliver samples to Courlenay or Victoria		
			N	N N	N					^	Overnight shipping: If you ship a sample on the same day that it was collected you can use an		
5			Y	YY	Υ					×	overnight courier.		
			N	N N	N		_	Ш			Seme day shipping: Available from Ken's Transfer, Ace Courier, and Greyhound (Courtenay only). Please contact the lab for details.		
Print name and sign		in.	int name and sign				20.54				Laboratory Use Only		
*Religguished By:	Date (yy/mm/dd):	1	eceived by :		A	3-0	Da	te (yy/r	nm/dd	1:	Time (24hr): Time Temperature on Receipt (°C) Custody Seal Yes No N/A		
AP Koh	wt 2017/01/10		MIDE	Ville	2m	SA.		7/0			1520. Sensitive A) S B) S C) D Present A		

For further information and resources on result interpretation, please visit our Drinking Water Resource Center:

http://maxxam.ca/maxxams-resource-centre-for-drinking-water-testing

BBY FCD-00189/2

APPENDIX H

Photo 1. Swanson's Pond looking northwesterly, May 6, 2017.

Photo 2. Swanson's Pond looking northerly, May 28, 2017.

Photo 3. Swanson's Pond looking northwesterly, June 27, 2017.

Stantec Consulting Ltd. 400-655 Tyee Road, Victoria, BC V9A 6X5

December 4, 2019 File: 111720087

Attention: Eric Booth, Director Salt Spring Ventures Inc.

Dear Mr Booth,

Reference: Domestic Water Study for Lot 10, Park Drive, Salt Spring Island, BC

Stantec Consulting Ltd. (Stantec) were retained by Salt Spring Ventures to provide a high-level Domestic Water Study for the proposed development at Lot 10, Park Drive ("Lot 10") in the Village of Ganges on Salt Spring Island, BC.

This technical memorandum (memo) reviews the potential of the proposed water system to provide the required domestic flows, and the regulatory permits which would need to be obtained prior to construction. The water supply will be provided by Well No.25502, licensed under the Ministry of Environment Groundwater Use Act, situated within Lot 10.

This memo aims to address the following points:

- To determine the required water demand to service Lot 10's proposed developments
- To determine if the available capacity determined within the recently developed wells onsite can supply the proposed development solely for its domestic water purposes.

BACKGROUND DATA

Stantec reviewed the following reference documents:

- Emails exchanges between Salt Spring Ventures and Stantec from August 22, 2019 to August 30, 2019 and the attached document provided by Salt Spring Ventures named "info to Stantec Aug 30, 2019".
 The documents provide background information on the size of the development, the well and some preliminary calculations on the water demand.
- Report from Hy-Geo Consulting on ground water supply for Lot 10, Section 2, Range 3 East, North Salt Spring Island, dated of August 11, 2017. This report gives an assessment of the quality and quantity of available groundwater for the proposed Development.
- "Guidelines for the Approval of Water Supply Systems" (Island Health)
- Island Waterworks preliminary design figures for the water treatment design.

December 4, 2019 Eric Booth, Director Page 2 of 8

Reference: Domestic Water Study for Lot 10, Park Drive, Salt Spring Island, BC

The North Salt Spring Water Works (NSSWW) District has a moratorium policy in place which restricts each parcel on the District's tax roll to one 19mm diameter water service. This is as a result of investigations carried out by consultants in 2014 which indicated that there is insufficient storage in St Mary's Lake and Maxwell Lake to allow for the withdrawal of the total licensed volume, and as such the Board of Trustee's opted to impose a limit on the number and size of services as a means of water conservation.

WATER DEMAND CALCULATIONS

Design Requirements and Assumptions

The Lot 10 development, as described in the background data sent to Stantec, details a total of 49 units including 1 single family dwelling, 24 studio units and 24 one bedroom units.

We understand that the single family dwelling unit water supply will be provided by NSSWD and therefore is not accounted in the following calculations.

Salt Spring Ventures has estimated a population of 1 occupant per dwelling for the 24 studio units and 1.5 occupants per dwelling for the 24 one bedroom units. This results in a population of 60 occupants in total which would be connected to the well.

Using this information Stantec calculated the domestic water demand anticipated to be placed on the well. The anticipated demand was then compared to the available flow from the well given in the hydrogeology report from Hy-Geo Consulting to determine if there will be any potential capacity issues.

Island Health (IH) mandates that water supplied must be of sufficient quantity for drinking and for sanitary purposes, and provides a design guideline of 225L/day/capita. This ties closely in with the Ministry of Forests, Lands, and Natural Resource Operations (FLNRO) guidelines of 230L/cap/day for indoor water demand.

No water saving measures such as grey water reuse or rainwater harvesting is accounted for in this report, all water required for domestic use is assumed to come from the well. Water for fire suppression is assumed to be provided by NSSWW.

Demand Calculations

Island Health Guidelines

The following subsections summarize the calculations used to determine the anticipated water usage for the 49 unit development. As noted above, we have used the IH mandated quantities per capita for this calculation and validated this quantity assumption by comparing with the FLNRO guidelines.

We have been provided the following population equivalent information to use as our design basis:

- 60 people to be serviced from the proposed wells, with 2 people per unit, and water quantity requirements of 225L/capita/day. Hence the Total Daily Water Demand = 60 * 225 = 13,500 L/day = 0.156 L/s.

Reference: Domestic Water Study for Lot 10, Park Drive, Salt Spring Island, BC

Comparison with Ministry of Forests, Lands, and Natural Resource Operations Guidelines

As a due diligence exercise, we compared the water quantity estimates developed from the IH guidelines with the FLNRO design guidelines for rural water systems. FLNRO derives the Max Day Demand (MDD) flows using the following formula:

MDD = Indoor Demand (ID) + Water Loss Allowance (WLA) + Irrigation Demand (Irr)

$$MDD = ID + WLA + Irr$$

Indoor demand is based on a water usage rate of 230 L/capita/day, which closely resembles the IH recommendation. Utilizing this with the provided population equivalency of 60 to be serviced by the new well, we get the following results:

$$ID = 230 \frac{L}{c * d} * 60 c = 13,800 \frac{L}{d}$$

The indoor demand calculated above considers all indoor appurtenances, including drinking water and sanitary uses.

Water Loss Allowance is based on the physical system and parameters such as length of mains, number of service connections and average operating pressures are utilized to determine this amount. It assumes that for a larger system there is a probability that joints or connection points may either be aging or installed incorrectly and thus create leaks. For a system of the size of this development it is not anticipated that there will be any significant leaks, but the calculation was still included to be conservative.

$$WLA = 5 x (0.4704 x Lm + 0.0303 x Nc + 0.8Lc) x \left(\frac{P}{49.26}\right)^{1.5}$$

Where,

- WLA = Water Loss (m³/d)
- L_m = watermain length (km)
- N_c = # of service connections
- L_c = total length of service connections (km)
- P = Average system pressure (metres water column)

The detailed design information for the water system is unknown at this time so the following conservative assumptions were made to provide a factor of safety in reviewing available capacity:

- The watermain length (L_m) was assumed to be approximately 100m.
- The number of service connections (N_c) was assumed to be one main service to the building.
- The length of service connections off of the watermain (L_c) was assumed to be 10m.
- The service pressure (P) was assumed to be 515kPa (52.5m) which is the maximum recommended pressure without requiring pressure reducing valves within buildings.

$$WLA = 5 x \left(\frac{0.4704}{10} + 0.0303 x + 1 + 0.8 * 0.01 \right) x \left(\frac{52.5}{49.26} \right)^{1.5} = 0.469 \frac{m^3}{d} = 469 \frac{L}{d}$$

Reference: Domestic Water Study for Lot 10, Park Drive, Salt Spring Island, BC

Note:

- 1. The values for length of watermain and service connections were given estimation based off the site size.
- 2. The WLA is a conservative estimate that considers the potential for water systems to develop leaks due to poor installation or aging systems. It is likely not an issue for a development and water system for this site as there is minimal piping onsite and it will likely remain undisturbed from future construction works. To reduce the likelihood of leaks additional design considerations may be stipulated which would make water loss negligible for this water system.

At this time, no allowance has been made for irrigation on site.

Water Demand is calculated from combining the above items. Combining them we get:

$$DD = ID + WLA + Irr = 13,800 + 469 + 0 = 14,269 L/d$$

Water Demand From Water Treatment Plant Filtration Backwash Water System:

As discussed below, the water extracted from the well will require filtration before being delivered. The filter backwash water requirements have been preliminarily assessed by Island Waterworks at:

Backwash water = 938 l/d

Supporting calculations for the backwash water are shown below in the water treatment section.

Total Water Demand is calculated when adding the filters backwash requirements to the water demand:

$$MDD = ID + WLA + Irr + Backwash = 13,800 + 469 + 0 + 938 = 15,207 L/d$$

WATER DEMAND COMPARED WITH WELL CAPACITY

Hy-Geo consulting completed hydrogeological pumping tests for the Well WID 25502 at different periods in 2017.

Their report mentions the following:

- A man-made pond, locally known as Swanson's Pond, occupies the central portion of the property covering an area of approximately 0.23 acres or 924 square meters based on late summer 2013 orthophoto mapping.
- During the pumping tests, Hy-Geo consulting assessed that under pumping conditions, up to 59 percent of the water pumped from the well can be attributed to inflow from the pond.
- The currently available long term capacity of the well has been rated in conjunction with the Swanson's Pond. The available long term pumping rate from the well has been assessed at 13.2 L/min, or 19,008 l/d.

December 4, 2019 Eric Booth, Director Page 5 of 8

Reference: Domestic Water Study for Lot 10, Park Drive, Salt Spring Island, BC

The FLNRO Design Guidelines for Rural Residential Community Water Systems (2012) states in Section 2.2 – Groundwater: "The total developed groundwater capacity or dependable yield of well(s) must equal or exceed the Maximum Day Demand." Therefore, the calculated MDD placed on the well from must not exceed 19,008 L/d.

The calculated water demand based on the IH and FLNRO design guidelines are as follows:

FLNRO: 14,269/L/day

Island Health: 13,800L/day

The above calculations, relying on the information provided within the *Report on ground water supply for lot 10, section 2, range 3 east, north salt spring island*, from Hy-Geo Consulting, show that the water demand is potentially able to be serviced by the onsite well, but further investigation should be made as to what the effect of the inflow from the pond. It is unclear for the moment where the development will be located and whether it will have an impact on the pond. Further investigation will be required to assess the impact of the construction on the Swanson Pond.

WATER QUALITY

WELL WATER QUALITY

The Report on ground water supply for lot 10, section 2, range 3 east, north salt spring island, from Hy-Geo Consulting provides the analyses results of the well WID 2552 testing for water quality. The report indicates that the samples met or exceeded the *Guidelines for Canadian Drinking Water* (Federal-Provincial-Territorial Committee on Drinking Water, 2017) for all parameters tested except for:

- Total coliforms,
- E. Coli,
- Colour,
- Turbidity,
- Iron,
- Manganese
- Sulphide.

Presence of a slight sulphur odour was also detected during field sampling indicative of hydrogen sulphide (H2S). Most of these parameters, such as colour, iron, manganese and hydrogen sulphide are of aesthetic concern and do not pose a direct health hazard for the concentrations reported. The Langelier index ranging from -0.996 to -1.26 indicates mild to moderate corrosive tendencies.

Reference: Domestic Water Study for Lot 10, Park Drive, Salt Spring Island, BC

CONCEPT DESIGN CONSIDERATIONS

POTABLE WATER TREATMENT

The analysis results show that the well water presents a risk of containing pathogens and will therefore require some disinfection. Additionally, the relatively high turbidity of the water tested implies that some type of filtration will be needed upstream the disinfection process. Finally, the relatively high level of iron, manganese, turbidity, colour and hydrogen sulphide imply the requirement of a properly designed water treatment system to reduce them to levels that meet or exceed the Guidelines for Canadian Drinking Water. While not posing a direct health hazard at the reported concentrations, iron and manganese oxides can affect the water color and flavor and create mineral deposit in the pipes. The type of water treatment will be selected in the detailed design but typically oxidation followed by filtration and finally disinfection is a common treatment for the parameters cited above.

Filtration treatment requires a regular backwash process which will require a supply of potable water to clean any residual material off the filters. If this is to be provided from the onsite well, a dedicated reservoir and pump system will need to be provided. The backwash water volumes required have been estimated by Island Waterworks according to the following calculations:

Water use for backwash of systems:

- 1. 2×2.0 Nexsand every 5 days using 95 gallons (431L) per backwash = total use 190 (862L) gallons per 5 days = 172.4 L/day
- 2. 2×2.0 Carbon every 5 days using 95 gallons (432L) per backwash = total use 190 (862L) gallons per 5 days = 172.4L/day
- 3. 2x Colorsoft set at 10 grains backwashing every 3000 gallons (13,620L) using 125 gallons (567.5L) per regen = 5.23 regenerations every 5 days (based on 14,269L/day = daily water supply). 5.23 x 567.5L = 2,968L/5 days = 593.6L/day

 $Backwash\ water = 172.4L/day + 172.4L/day + 593.6L/day = 938L/day$

Total backwash water requirement = 6.57% of 14,269L/day

Maximum daily water requirements = 938L/day + 14,269L/day = 15,207L/day total

The backwash water must be treated water, so a dedicated reservoir and pump post treatment will need to be used to store water for backwash use. Island Waterworks estimated the storage tank for the backwash to be in the range of 10,000 Gallons. Island Waterworks confirmed their system is designed to meet Island Health Standards.

December 4, 2019 Eric Booth, Director Page 7 of 8

Reference: Domestic Water Study for Lot 10, Park Drive, Salt Spring Island, BC

ADDRESSING PEAK WATER DEMAND

The available long term pumping rate from the wells is 19,008 L/day, which equates to approximately 0.220 L/s. While this is enough to supply the daily demands from the development, it is not sufficient to supply the peak demands which are typical during the morning breakfast period, lunch time and evening dinner times. During the detailed design, the mechanical engineer will provide a peak flow that will need to be provided to the building and a minimum pressure that will need to be provided for suitable use in the buildings fixtures in accordance with BC Building Code (BCBC), and it is estimated these peak flows will be in the order of 5L/s based on previous similar projects.

To accommodate these peak flows, it is proposed to pump the water from the wells through the water treatment process and then into a storage reservoir which will be sized for one full day of water demand for the development. On the downstream side of this reservoir will be a pump skid (Grundfos BoosterPAQ or approved equal) which will be sized to accommodate the peak flows defined by the mechanical engineer and will also have variable speed capability to handle varying flow demands throughout the day.

The well pumps will fill the reservoir at the long term allowable pumping rate during off peak times to handle the high peak time flow demands from the building.

The above consideration is independent from the backwash flow issue.

FIRE SUPPRESSION

At this time, it is assumed all water for fire suppression will be provided by NSSWW. Hydrants should be located no more than 45m from Fire Department Connections on buildings for sprinklered units, and at no more than 90m hose laying length from any portion of the new buildings.

PERMITTING

According to the Drinking Water Protection (DWP) Act a "water supply system" is a well or surface water intake that serves more than a single-family home. As such this development's well will be considered a water supply system and will need to meet the requirements of the DWP Act and Regulation. To assist developers the Island Health Authority provide an application guide for the Water System Approval Process which should be referred to for further information regarding the application and permitting process for: water source approval, construction permit, operating permit, water quality management, operation and maintenance procedures, source protection, emergency response plan, operator training, and annual reporting.

The permits and requirements typically involved in multi-residential developments are listed below for ease of reference:

- Ministry of Environment Well License
- Island Health Source Approval
- Island Health Water Works Construction Permit

December 4, 2019 Eric Booth, Director Page 8 of 8

Reference: Domestic Water Study for Lot 10, Park Drive, Salt Spring Island, BC

- Island Health Operating Permit
- Island Health Holding Tank Permit (if required)
- BC Building Code Letters of Assurance (Schedule A, B, and C)
- Capital Regional District Building Permit
- Island Trust Development Permit

The Island Health Public Health Engineer will review the detailed design and specifications for compliance with the DWP Act and Regulation and requirements listed in the Water System Approval Process and will issue the permit to construct waterworks and the operating permit for the new water system, as well as a holding tank permit (if required for sanitary purposes).

The submittal for the Water Works Construction Permit will be handled by the water system design engineer and typically takes place around the time of the building permit application, once all design information has been finalized and only minor changes are expected. It is not recommended to begin the waterworks construction permit application process for this development until the rezoning for the site has been approved, the major design loads have been confirmed, and the project is in the detailed design stage.

If the design is submitted prior to the detailed design stage, it is likely that the submission will be rejected by Island Health and will require further advancement of the design as well as an additional subsequent submission to Island health prior to gaining their approval. This will have a negative effect on design costs and scheduling.

CLOSING

The IH and FLNRO design guidelines provide an effective and conservative tool towards developing the water demand capacity. Although the well appears to be able to accommodate the domestic demands from the development, there are unknowns associated with the effect of the pond on the well drawdown and these factors must be considered as the design proceeds forward.

Regards,

Stantec Consulting Ltd.

Shaun Swarbrick, P.Eng

Civil Engineer Associate

Phone: (250) 389-2545 Fax: (250) 382-0514

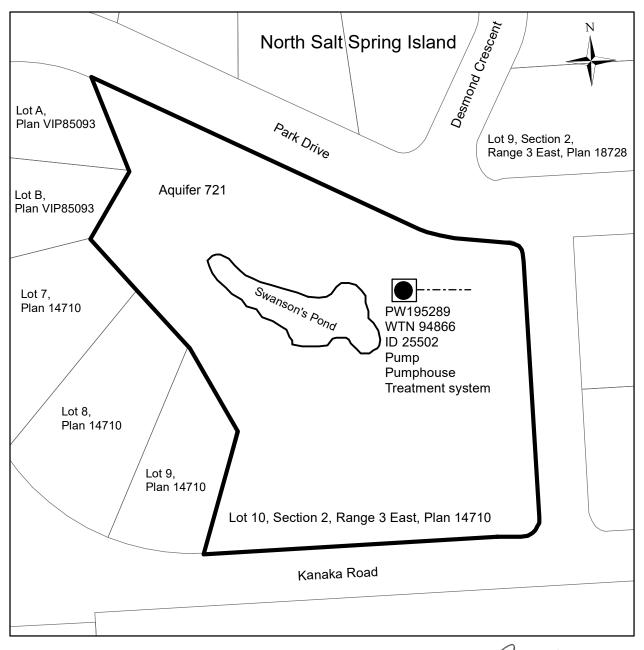
Shaun.swarbrick@stantec.com

Province of British Columbia Water Sustainability Act

CONDITIONAL WATER LICENCE

The owner(s) of the land to which this licence is appurtenant is/are hereby authorized to divert and use water as follows:

- a) The aquifer on which the rights are granted is 721.
- b) The point of well diversion is located as shown on the attached plan.
- c) The date from which this licence shall have precedence is February 6, 2018.
- d) The purpose for which this licence is issued is waterworks (other).
- e) The maximum quantity of water which may be diverted is 19 cubic metres per day.
- f) The period of the year during which the water may be used is the whole year.
- g) The land upon which the water is to be used and to which this licence is appurtenant is Lot 10, Section 2, Range 3 East, North Salt Spring Island, Cowichan District, Plan 14710.
- h) The authorized works are pumphouse, pump, well, pipe, treatment facility, and pond (Swanson's Pond) which shall be located approximately as shown on the attached plan.
- i) The construction of the said works shall be completed and the water shall be beneficially used prior to December 31, 2022. Thereafter, the licensee shall continue to make regular beneficial use of the water in the manner authorized herein.
- j) The licensee shall install a flow measuring device to the satisfaction of a Water Manager under the *Water Sustainability Act*.
- k) The licensee shall retain flow meter records for inspection upon request by a Water Manager under the *Water Sustainability Act*.


Darryl Slater

Water Manager

myl Str

File No. 20006356 Date Issued: January 16, 2019 Licence No.: 500810

WATER DISTRICT: Victoria
PRECINCT: Shawnigan Signature: January 16, 2019

LEGEND

Scale: 1:1,212

Point of Diversion:

Map Number: 92.B.083.3.2

Pipe: C.L.: 500810
FILE: 20006356

The boundaries of the land to which this licence is appurtenant are shown thus: